The xkeyval package *

Hendri Adriaens
http://stuwww.uvt.nl/~hendri

v2.0 (2005/01/30)

Abstract

This package is an extension of the keyval package and offers more flexible
macros for defining and setting keys. The package provides a pointer and a
preset system. Furthermore, it supplies macros to allow class and package
options to contain options of the key=value form. A KTEX kernel patch
is provided to avoid premature expansions of macros in class or package
options. A specialized system for setting PSTricks keys is provided by the
pst-xkey package.

Contents

1 Introduction 2 8 List of macro structures 18
2 Defining and checking keys 3 9 Warnings and errors 20

2.1 Ordinary keys 3
2.2 Boolean keys 4 10 Known issues 21

2.3 Command keys 5
2.4 Checking keys 5 11 Source and examples 21

2.5 Disabling keys.)
12 Implementation 22
3 Setting keys 6 12.1 TeX program 22
4 Pointers 8 gg EiTEX Erogr?m .h. R 32
4.1 Saving values 8 ’ TEX e.rnc? 'patc T b
42 Using saved values . . . 9 12.4 keyval primitives 47
12.5 TgX header 48

5 Presetting keys 11
References 49

6 Category codes 13
Acknowledgements 49

7 xkeyval and X TEX 14
7.1 Declaring and setting Version history 50

class or package options 15
7.2 Options with macros . . 17 Index 51

*This package can be downloaded from the CTAN mirrors: /macros/latex/contrib/xkeyval.
See xkeyval.dtx for information on installing xkeyval into your TEX or I#TEX distribution and
for the license of this package.

1 Introduction

This package is an extension of the keyval package by David Carlisle [3] and offers
more flexible and robust macros for defining and setting keys. Using keys in macro
definition has the advantage that the 9 arguments maximum can easily be avoided
and that it reduces confusion in the syntax of your macro when compared to using
a lot of (optional) arguments. Compare for instance the following possible syntaxes
of the macro \mybox which might for instance use its arguments to draw some box
containing text.

\mybox [5pt] [20pt] {some text}[red] [white] [blue]
\mybox [text=red,background=white,frame=blue,left=5pt,right=20pt]{some text}

Notice that, to be able to specify the frame color in the first example, the other
colors need to be specified as well. This is not necessary in the second example
and these colors can get default values. The same thing holds for the margins.

The idea is that one first defines some keys using the tools presented in section 2
in the preamble or in a package or class. These keys can perform some function
with the user input. The way to submit user input to these key macros, is by
using one of the user interfaces described in sections 3, 4 and 5. The main user
interface is provided by the \setkeys command. Using these interfaces, one can
simplify macro syntax and for instance define the \mybox macro above as follows.

\define@cmdkey{mybox}{background}
\def ine@key{mybox}{left}{\setlength\myleft{#1}}
% and some other keys
\def\mybox{\@ifnextchar [\@mybox{\@mybox []1}}
\def\@mybox [#1]#2{%

\setkeys{mybox}{#1}/,

% some operations

}

Several remarks should be made with respect to processing the user input. As-
suming that keya up to keyd are properly defined, one could do the following.

\setkeys{family}{keya= test a, keyb={test b,c,d}, ,keyc , keyd=end}

From values consisting entirely of a { } group, the outer braces will be stripped
off. This allows the user to ‘hide’ any commas or equality signs that appear in the
value of a key. This means that when using braces, xkeyval will not terminate the
key=value pair when it encounters a comma. For instance, see the value of keyb
in the example above. The same story holds for the equality sign. Notice further
that any white space around the characters = and , is ignored. Finally, keyc did
not get a value. If no default value has been defined for this key, an error will be
generated. More details can be found in sections 2, 3, 4 and 5.

Both keys defined using the keyval and xkeyval can be set by this package. The
xkeyval macros allow for scanning multiple families for keys. This can, for exam-
ple, be used to create local families for custom macros and environments which
may not access keys meant for other macros and environments, while at the same
time, allowing the use of a single command to set all of the keys from the different
families globally.

The package is compatible to plain TEX and redefines several keyval macros to
provide an easy way to switch between using keyval and xkeyval. This might be
useful for package writers that cannot yet rely on the availability of xkeyval in a
certain distribution. After loading xkeyval, loading keyval is prevented to make
sure that the extended macros of xkeyval will not be redefined. Some basic keyval
macros are supplied in keyval.tex to guarantee compatibility to packages that
use those macros. Section 10 provides more information about this issue.

To load xkeyval, plain TEX users do \input xkeyval. KTEX users do either
\usepackage{xkeyval} or \RequirePackage{xkeyval}. It is mandatory for
ETEX users to load xkeyval at any point after the \documentclass command.
Loading xkeyval from the class which is the document class itself is possible. The
package will use the e-TEX engine when available. In particular, \ifcsname is
used whenever possible to avoid filling TEX’s hash with useless entries for instance
when searching for keys in families.

PSTricks [5, 6] package authors should have a look at the pst-xkey package con-
tained in the xkeyval package distribution [1] for an options system based on xkey-
val, but which is specialized in defining and setting PSTricks keys.

The organization of this documentation is as follows. Section 2 will discuss the
macros available to define keys. Section 3 will continue with describing the macros
that can set the keys. Section 4 explains special syntax which will allow saving
and copying key values. In section 5, the preset system will be introduced. Sec-
tion 6 will explain how xkeyval protects itself for catcode changes of the comma
and the equality sign by other packages. The xkeyval package also provides com-
mands to declare and process class and package options. These will be discussed
in section 7.1. An extension of the INTEX 2¢ kernel is discussed in section 7.2. This
extension provides a way to use expandable macros in package options. Sections 9
and 10 discuss feedback that xkeyval might give and known issues, respectively.

Throughout this documentation, you will find some examples with a short de-
scription. More examples can be found in some example files that come with this
package. See section 11 for more information. This section also provides the in-
formation how to generate the source code documentation from the source. This
documentation provides the programming details of xkeyval.

2 Defining and checking keys

2.1 Ordinary keys

This section describes how to define ordinary keys.

\def ine@key [(prefiz)]{(family) }H(key)} [(default)]1{{function)}

This defines a macro \prefix@family@key with one argument holding (function).
The default value for (prefiz) is KV. This is the standard throughout the package
to simplify mixing keyval and xkeyval keys. When (key) is used in a list of op-
tions containing key=value, the macro \prefix@family@key receives value as

its argument. The argument can be accessed by (function) by using #1 inside the
function.

’ \define@key{family}{key}{The input is: #1} ‘

xkeyval will generate an error when the user omits =value for a key in the options
list. To avoid this, the optional argument can be used to specify a default value.

’ \define@key{family}{key} [none]l {The input is: #1} ‘

This will additionally define a macro \prefix@family@key@default as a macro
with no arguments and definition \prefix@family@key{none} which will be used
when =value is missing for key.

When (prefix) is specified and empty, the macros created by \define@key will
have the form \family@key. When (family) is empty, the resulting form will be
\prefix@key. When both (prefir) and (family) are empty, the form is \key.

The intended use for (family) is to create distinct sets of keys. This can be used
to avoid a macro setting keys meant for another macro only. The optional (prefiz)
can be used to identify keys specifically for your package. Using a package specific
prefix reduces the probability of multiple packages defining the same key macros.
This optional argument can also be used to set keys of some existing packages
which use a system based on keyval.

We now define some keys to be used in examples throughout this documentation.

\def ine@key [my]{familya}{keya}{#1}
\define@key [my]{familya}{keyb}{#1}
\def ine@key [my]{familyb}{keyb}{#1}
\define@key [my] {familya}{keyc}{#1}

2.2 Boolean keys

This section describes boolean keys which are either true or false. When com-
paring the macro of this section to \define@key of section 2.1, we see that the
(function) is known (namely, set a conditional to true or false) and hence the
macro has one mandatory argument less.

\define@boolkey [(prefix)]{(family)H (key)} [{default)]

This creates a conditional of the form \ifprefix@family@key” using \newif?
(which initiates the conditional to \iffalse) and a key macro of the form
\prefix@family@key which is defined as \XKV@setbool{prefix@family@key}{#1}.

1Like PSTricks, which uses a system originating from keyval, but which has been modified to
use no families and psset as prefix.

2When you want to use this macro directly, either make sure that neither of the input
parameters contains characters with a catcode different from 11 (hence no - for instance), reset
the catcode of the offending characters internally to 11 or use \csname. . . \endcsname to construct
macro names, (for instance, \csname ifpre@some-fam@key\endcsname). See for more information
section 8.

3The IATEX of implementation \newif is used because it can be used in the replacement text
of a macro, whereas the plain TEX \newif is defined \outer.

The macro \XKV@setbool only takes the values true and false and uses that to
set the conditional. The default value can only be true or false as well.

\def ine@boolkey{fam}{frame}

This example creates \1fKV@fam@frame and defines \KV@fam@frame to expand to
\XKV@setbool{KV@fam@frame}{#1}.

2.3 Command keys

This section describes command keys. The macro described here is a specialized
version of \define@key described in section 2.1 and (function) will store the user
input in a macro.

\define@cmdkey [(prefiz)]{{family){{key)} [{default)]

This defines the key macro \prefix@family@key? with one argument to define a
macro in the following way: \def\prefix@family@key@cmd{#1}.

’ \define@cmdkey{fam}{text}

This example defines the key \KV@fam@text to store user input to the \setkeys
command (see section 3) in the macro \KV@fam@keyQtext@cmd.

2.4 Checking keys

This section provides a macro to check the existence of keys.

\key@ifundefined [(prefiz)]{(families)}{(key)}H (undefined)}{(defined)

This macro executes (undefined) when (key) is not defined in a family listed in
(families) using (prefiz) (which is KV by default) and (defined) when it is. If
(defined) is executed, \XKV@tfam holds the first family in the list (families) that
holds (key). If (undefined) is executed, \XKV@tfam contains the last family of the
list (families).

’ \key@ifundefined [my]{familya,familyb}{keya}{‘keya’ not defined}{‘keya’ defined} ‘

This example results in ‘keya’ defined and \XKV@tfam holds familya.

2.5 Disabling keys

It is also possible to disable keys after use as to prevent the key from being used
again.

\disable@keys [(prefiz)] {(family)}H (keys)}

When you disable a key, the use of this key will produce a warning in the log file.
Disabling a key that hasn’t been defined will result in an error message.

\disable@keys [my] {familya}{keya,keyb}

This would make keya and keyb produce a warning when one tries to set these
keys.

3 Setting keys

This section describes the available macros for setting keys. All of the macros
in this section have an optional argument (prefiz) which determines part of the
form of the keys that the macros will be looking for. See section 2. This optional
argument takes the value KV by default.

\setkeys [(prefiz)]1{(families)} [{na)1{{keys)}

This macro sets keys of the form \prefix@family@key where family is an element
of the list (families) and key is an element of the options list (keys) and not of
(na). The latter list can be used to specify keys that should be ignored by the
macro. If a key is defined by more families in the list (families), the first family
from the list defining the key will set it. No errors are produced when (keys) is
empty. If family is empty, the macro will set keys of the form \prefix@key. If
(prefiz) is specified and empty, the macro will set keys of the form \family@key.
If both (prefiz) and family are empty, the macro will set keys of the form \key.
This is in line with how key macros are constructed (see section 2).

\setkeys [my] {familya,familyb}{keya=test}
\setkeys [my]{familya,familyb}{keyb=test}
\setkeys [my] {familyb,familya}{keyb=test}

In the example above, line 1 will set keya in family familya. The next line will
set keyb in familya. The last one sets keyb in family familyb.

When you want to use commas or equality signs in the value of a key, surround
the value by braces, as shown in the example below.

\setkeys [my] {familya}{keya={some=text,other=text}}

It is possible to nest \setkeys commands in other \setkeys commands or in key
definitions. The following, for instance,

\def ine@key [my] {familyb}{keyc}{#1~and~\setkeys [my]{familya}{keya=#1}}
\setkeys [my] {familyb}{keyc=a\setkeys [my]{familya}{keya="and"b}}

returns a and b and a and b.

\setkeys* [(prefiz)]{(families)} [(na)]{{keys)}

The starred version of \setkeys sets keys which it can locate in the given families
and will not produce errors when it cannot find a key. Instead, these keys and
their values will be appended to a list of remaining keys in the macro \XKV@rm
after the use of \setkeys*. Keys listed in (na) will be ignored fully and will not
be appended to the \XKV@rm list.

\setkeys* [my]{familyb}{keya=test}

Since keya is not defined in familyb, the value in the example above will be stored
in \XKV@rm (so \XKV@rm expands to keya=test) for later use and no errors are
raised.

\setrmkeys [(prefix)] {(families)} [{na)]

The macro \setrmkeys sets the remaining keys given by the list \XKVQrm stored
previously by a \setkeys* (or \setrmkeys*) command in (families). (na) again
lists keys that should be ignored. It will produce an error when a key cannot be
located.

\setrmkeys [my] {familya} ‘

This submits keya=test from the previous \setkeys* command to familya. keya
will be set.

\setrmkeys* [(prefiz)]{(families)} [(na)]

The macro \setrmkeys* acts as the \setrmkeys macro but now, as with
\setkeys*, it ignores keys that it cannot find and puts them again on the list
stored in \XKV@rm. Keys listed in (na) will be ignored fully and will not be ap-
pended to the list in \XKV@rm.

\setkeys*[my]{familyb}{keya=test}
\setrmkeys* [my] {familyb}
\setrmkeys [my] {familya}

In the example above, the second line tries to set keya in familyb again and no
errors are generated on failure. The last line finally sets keya.

The combination of \setkeys* and \setrmkeys can be used to construct complex
macros in which, for instance, a part of the keys should be set in multiple families
and the rest in another family or set of families. Instead of splitting the keys or the
inputs, the user can supply all inputs in a single argument and the two macros will
perform the splitting and setting of keys for your macro, given that the families
are well chosen.

\setkeys+ [(prefix)]{(families)} [(na)]1{(keys)}
\setkeys*+[(prefix)] {(families)} [(na)]{(keys)}
\setrmkeys+ [(prefiz)]{(families)} [(na)]
\setrmkeys*+[(prefiz)]{(families)} [(na)]

These macros act as their counterparts without the +. However, when a key
in (keys) is defined by multiple families, this key will be set in all families in
(families). This can, for instance, be used to set keys defined by your own package
and by another package with the same name but in different families with a single
command.

’ \setkeys+[my]{familya,familyb}{keyb=test}

The example above sets keyb in both families. See also section 11 for more exam-
ples.

4 Pointers

The xkeyval package allows the use of pointers in key values. These pointers can
be used to copy values of keys. Hence, one can reuse the value that has been
submitted to a particular key in the value of another key. This section will first
describe how xkeyval can be made to save key values. After that, it will explain
how to use these saved values again.

4.1 Saving values

Saving a value for a particular key can be accomplished by using the \savevalue
command with the key name as argument.

\setkeys [my] {familya}{\savevalue{keya}=test}

This example will set keya as usual, but will additionally define the macro
\XKVOmy@familya@keya@value to expand to test. This macro can be used later
on by xkeyval to replace pointers. In general, values of keys will be stored in macros
of the form \XKV@prefix@family@key@value. This implies that the pointer sys-
tem can only be used within the same family (and prefix). We will come back to
that in section 4.2.

Using the global version of this command, namely \gsavevalue, will define the
value macro \XKV@my@family@key@value globally. In other words, the value
macro won’t survive after a \begingroup. ..\endgroup construct (for instance,
an environment), when it has been created in this group using \savevalue and it
will survive afterwards if \gsavevalue is used.

\setkeys [my] {familya}{\gsavevalue{keyalt=test}

This example will globally define \XKV@my@familya@keya@value to expand to
test.

Actually, in most applications, package authors do not want to require users to
use the \savevalue form when using the pointer system internally. To avoid this,
the xkeyval package also supplies the following commands.

\savekeys [(prefiz)]{(family)}{(keys)}
\gsavekeys [(prefiz)]{(family)}{{keys)}

The \savekeys macro stores a list of keys for which the values should always be
saved to a macro of the form \XKV@prefix@family@save. This will be used by
\setkeys to check whether a value should be saved or not. The global version
will define this internal macro globally so that the settings can escape groups (and
environments). The \savekeys macro works incrementally. This means that new
input will be added to an existing list for the family at hand if it is not in yet.

\savekeys [my]{familya}{keya,keyc}
\savekeys [my]{familya}{keyb,keyc}

The first line stores keya,keyc to \XKV@my@familya@save. The next line changes
the content of this macro to keya,keyc,keyb.

\delsavekeys [(prefiz)] {{family)}H (keys)}
\gdelsavekeys [(prefix)]{(family)}{(keys)}
\unsavekeys [(prefiz)1{(family)}
\gunsavekeys [(prefiz)]{(family)}

The \delsavekeys macro can be used to remove some keys from an already defined
list of save keys. No errors will be raised when one of the keys in the list (keys) was
not in the list. The global version \gdelsavekeys does the same as \delsavekeys,
but will also make the resulting list global. The \unsavekeys macro can be used
to clear the entire list of key names for which the values should be saved. The
macro will make \XKV@prefix@family@save undefined. \gunsavekeys is similar
to \unsavekeys but makes the internal macro undefined globally.

\savekeys [my]{familya}{keya,keyb,keyc}
\delsavekeys [my] {familya}{keyb}
\unsavekeys [my]{familya}

The first line of this example initializes the list to contain keya,keyb,keyc. The
second line removes keyb from this list and hence keya,keyc remains. The last
line makes the list undefined and hence clears the settings for this family.

It is important to notice that the use of the global version \gsavekeys will only
have effect on the definition of the macro \XKV@prefix@family@save. It will
not have an effect on how the key values will actually be saved by \setkeys. To
achieve that a particular key value will be saved globally (like using \gsavevalue),
use the \global specifier in the \savekeys argument.

’ \savekeys [my]l{familya}{keya, \global{keyc}}

This example does the following. The argument keya, \global{keyc} is saved (lo-
cally) to \XKV@my@familya@save. When keyc is used in a \setkeys command, the
associated value will be saved globally to \XKV@my@familya@keya@value. When
keya is used, its value will be saved locally.

All macros discussed in this section for altering the list of save keys only look at the
key name. If that is the same, old content will be overwritten with new content,
regardless whether \global has been used in the content. See the example below.

\savekeys [my]{familya}{\global{keybl},keyc}
\delsavekeys [my] {familya}{keyb}

The first line changes the list in \XKV@my@familya@save from keya, \global{keyc}
to keya,keyc,\global{keyb}. The second line changes the list to keya,keyc.

4.2 Using saved values

The syntax of a pointer is \usevalue{keyname} and can only be used inside
\setkeys and friends. xkeyval will replace a pointer by the value that has been
saved for the key that the pointer is pointing to. If no value has been saved for
this key, an error will be raised. The following example will demonstrate how to
use pointers (using the keys defined in section 2.1).

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\usevalue{keyal}}

The value submitted to keyb points to keya. This has the effect that the value
recorded for keya will replace \usevalue{keya} and this value (here test) will
be submitted to the key macro of keyb. Since the saving of values is prefix and
family specific, pointers can only locate values that have been saved for keys with
the same prefix and family as the key for which the pointer is used. Hence this

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familyb}{keyb=\usevalue{keyal}}

will never work. An error will be raised in case a key value points to a key for
which the value cannot be found or has not been stored.

It is possible to nest pointers as the next example shows.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my]l{familya}{\savevalue{keyb}=\usevalue{keyal}}
\setkeys [my] {familya}{keyc=\usevalue{keybl}}

This works as follows. First xkeyval records the value test in a macro. Then,
keyb uses that value. Besides that, the value submitted to keyb, namely
\usevalue{keyal} will be recorded in another macro. Finally, keyc will use the
value recorded previously for keyb, namely \usevalue{keya}. That in turn points
to the value saved for keya and that value will be used.

It is important to stress that the pointer replacement will be done before TEX or
ETEX performs the expansion of the key macro and its argument (which is the
value that has been submitted to the key). This allows pointers to be used in al-
most any application. (The exception is grouped material, to which we will come
back later.) When programming keys (using \define@key and friends), you won’t
have to worry about the expansion of the pointers which might be submitted to
your keys. The value that will be submitted to your key macro in the end, will
not contain pointers. These have already been expanded and been replaced by the
saved values.

A word of caution is necessary. You might get into an infinite loop if pointers are
not applied with care, as the examples below show. The first example shows a
direct back link.

\setkeys [my]l{familya}{\savevalue{keya}=\usevalue{keyal}}

The second example shows an indirect back link.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{\savevalue{keyb}=\usevalue{keya}}
\setkeys [my]{familya}{\savevalue{keya}=\usevalue{keyb}}

In these cases, an error will be issued and further pointer replacement is canceled.

As mentioned already, pointer replacement does not work inside grouped material,
{...}, if this group is not around the entire value (since that will be stripped off,
see section 1). The following, for instance, will not work.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\parbox{2cm}{\usevalue{keya}}}

The following provides a working alternative for this situation.

10

\setkeys [my]{familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\begin{minipage}{2cm}\usevalue{keya}\end{minipage}}

In case there is no appropriate alternative, we can work around this restriction,
for instance by using a value macro directly.

\setkeys [my] {familya}{\savevalue{keya}=test}
\setkeys [my] {familya}{keyb=\parbox{2cm}{\XKV@my@familya@keya@value}}

When no value has been saved for keya, the macro \XKV@my@familyaQkeya@value
is undefined. Hence one might want to do a preliminary check to be sure that the
macro exists.

Pointers can also be used in default values. We finish this section with an example
which demonstrates this.

\def ine@key{fam}{keya}{keya: #1}
\define@key{fam}{keyb} [\usevalue{keyal}]{keyb: #1}
\def ine@key{fam}{keyc}[\usevalue{keyb}]{keyc: #1}
\setkeys{fam}{\savevalue{keya}t=test}
\setkeys{fam}{\savevalue{keybl}}
\setkeys{fam}{keyc}

Since user input is lacking in the final two commands, the default value defined
for those keys will be used. In the first case, the default value points to keya,
which results in the value test. In the second case, the pointer points to keyb,
which points to keya (since its value has been saved now) and hence also in the
final command, the value test will be submitted to the key macro of keyc.

5 Presetting keys

In contrast to the default value system where users are required to specify the
key without a value to assign it its default value, the presetting system does not
require this. Keys which are preset will be set automatically by \setkeys when
the user didn’t use those keys in the \setkeys command. When users did use the
keys which are also preset, \setkeys will avoid setting them again. This section
again uses the key definitions of section 2.1 in examples.

\presetkeys [(prefiz)]{{family)}{(head keys) I (tail keys)}
\gpresetkeys [(prefiz)]1{(family)}{ (head keys)}{(tail keys)}

This macro will save (head keys) to \XKV@prefix@family@preseth and (tail keys)
to \XKV@prefix@family@presett. Savings are done locally by \presetkeys and
globally by \gpresetkeys (compare \savekeys, section 4.1). The saved macros
will be used by \setkeys, when they are defined, whenever (family) is used in the
(families) argument of that macro. Head keys will be set before setting user keys,
tail keys will be set afterwards. However, if a key appears in the user input, this
particular key will not be set by any of the preset keys.

The macro works incrementally. This means that new input for a particular key

replaces already present settings for this key. If no settings were present yet,
the new input for this key will be appended to the end of the existing list. The

11

replacement ignores the fact whether a \savevalue or an = has been specified in
the key input. Assuming that all keys in the next example have a default value,
we could do the following.

\presetkeys{fam}{keya=red, \savevalue{keyb},keyc}{}
\presetkeys{fam}{\savevalue{keya},keyb=red,keyd}{}

After the first line of the example, the macro \XKVOKV@fam@preseth contains
keya=red, \savevalue{keyb},keyc. After the second line of the example, the
macro will contain \savevalue{keya},keyb=red,keyc,keyd. The (tail keys) re-
main empty throughout the example.

\delpresetkeys [(prefiz)]1{(family)}{(head keys)}{(tail keys)}
\gdelpresetkeys [(prefiz)]{{family)}{ (head keys)}{ (tail keys)}

These commands can be used to (globally) delete entries from the presets by
specifying the key names for which the presets should be deleted. Continuing the
previous example, we could do the following.

\delpresetkeys{fam}{keya,keyb}{}

This redefines the list of head presets \XKV@KV@f am@preseth to contain keyc,keyd.
As can be seen from this example, the exact use of a key name is irrelevant deletion.

\unpresetkeys [(prefiz)]{{family)}
\gunpresetkeys [(prefiz)]{(family)}

This command clears the presets for (family) and works just as \unsavekeys. It
makes \XKV@prefix@family@preseth and \XKV@prefix@family@presett unde-
fined. The global version will make the macros undefined globally.

Two type of problems in relation to pointers could appear when specifying head
and tail keys incorrectly. This will be demonstrated with two examples. In the first
example, we would like to set keya to blue and keyb to copy the value of keya,
also when the user has changed the preset value of keya. Say that we implement
the following.

\savekeys [my]{familya}{keya}
\presetkeys [my]{familya}{keya=blue,keyb=\usevalue{keyal}}{}
\setkeys [my] {familya}{keya=red}

This will come down to executing

\savekeys [my]{familya}{keyal}
\setkeys [my] {familya}{keyb=\usevalue{keya},keya=red}

since keya has been specified by the user. At best, keyb will copy a probably
wrong value of keya. In the case that no value for keya has been saved before,
we get an error. We observe that the order of keys in the simplified \setkeys
command is wrong. This example shows that the keyb=\usevalue{keya} should
have been in the tail keys.

The following example shows what can go wrong when using presets incorrectly
and when \setkeys contains pointers.

12

\savekeys [my]{familya}{keya}
\presetkeys [my]{familya}{}{keya=red}
\setkeys [my] {familya}{keyb=\usevalue{keya}t}

This will come down to executing the following.

\savekeys [my]{familya}{keya}
\setkeys [my] {familya}{keyb=\usevalue{keyal},keya=red}

This results in exactly the same situation as we have seen in the previous example
and hence the same conclusion holds. In this case, we conclude that the keya=red
argument should have been specified in the head keys of the \presetkeys com-
mand.

For most applications, one could use the rule of thumb that preset keys containing
pointers should go in the tail keys. All other keys should go in head keys. There
might, however, be applications thinkable in which one would like to implement
the preset system as shown in the two examples above, for instance to easily re-
trieve values used in the last use of a macro or environment. However, make sure
that keys in that case receive an initialization in order to avoid errors of missing
values.

For completeness, the working example is below.

\savekeys [my]{familya}{keya}

\presetkeys [my] {familya}{keya=blue}{keyb=\usevalue{keyal}}
\setkeys [my] {familya}{keya=red}
\presetkeys [my] {familya}{keya=red}{}

\setkeys [my] {familya}{keyb=\usevalue{keyal}}

Other examples can be found in the example files. See section 11.

6 Category codes

Some packages change the catcode of the equality sign and the comma. This is
a problem for keyval as it then does not recognize these characters anymore and
cannot parse the input. This problem can play up on the background. Consider for
instance the following example and note that the graphicx package is using keyval
and that Turkish babel will activate the equality sign for shorthand notation.

\documentclass{article}
\usepackage{graphicx}

\usepackage [turkish] {babel}
\begin{document}
\includegraphics[scale=.5]{rose.eps}
\end{document}

The babel package provides syntax to temporarily reset the catcode of the equality
sign and switch shorthand back on after using keyval (in the \includegraphics
command), namely \shorthandoff{=} and \shorthandon{=}. But having to do
this every time keyval is invoked is quite cumbersome. Besides that, it might not
always be clear that the keyval package is used inside a command.

13

For these reasons, xkeyval performs several actions with user input before trying to
parse it. First of all, it performs a check whether the characters = and , appear in
the input with unexpected catcodes. If so, the \@selective@sanitize macro is
used to sanitize these characters only in the top level. This means that characters
inside (a) group(s), { }, will not be sanitized. For instance, when using Turkish
babel, it is possible to use = shorthand notation even in the value of a key, as long
as this value is inside a group.

\documentclass{article}
\usepackage{graphicx}

\usepackage [turkish] {babel}
\usepackage{xkeyvall}

\makeatletter
\define@key{fam}{key}{#1}
\begin{document}
\includegraphics[scale=.5]{rose.eps}
\setkeys{fam}{key={some =textl}}
\end{document}

In the example above, the \includegraphics command does work. Further, the
first equality sign in the \setkeys command will be sanitized, but the second one
will be left untouched and will be typeset as babel shorthand notation.

The commands \savekeys and \disable@keys are protected against catcode
changes of the comma. The commands \setkeys and \presetkeys are protected
against catcode changes of the comma and the equality sign. Note that ETEX
option macros (see section 7.1) are not protected as KTEX does not protect them
either.

7 xkeyval and ETEX

If xkeyval is loaded by \RequirePackage or \usepackage, the package will per-
forms two action immediately. These require xkeyval to be loaded at any point
after \documentclass or by the document class itself.

First, it retrieves the document class and stores that (including the class extension)
into the following macro.

\XKV@documentclass

This macro could, for instance, contain article.cls and can be useful when us-
ing \ProcessOptionsX* in a class. See page 16.

Secondly, the global options stored in \@classoptionslist by IXTEX are copied
to the following macro.

\XKV@classoptionslist

This macro will be used by \ProcessOptionsX. Options containing an equality
sign are deleted from the original list in \@classoptionslist to avoid packages,
which do not use xkeyval and which are loaded later, running into problems when
trying to copy global options using I#TEX’s \ProcessOptions.

14

7.1 Declaring and setting class or package options

The macros in this section can be used to build KTEX class or package options sys-
tems using xkeyval. These are comparable to the standard ETEX macros without
the trailing X. See for more information about these INTEX macros the documenta-
tion of the source [2] or a WTEX manual (for instance, the WTEX Companion [4]).
The macros in this section have been built using \define@key and \setkeys and
are not available to TEX users.

The macros below allow for specifying the (family) (or (families)) as an optional
argument. This could be useful if you want to define global options which can
be reused later (and set locally by the user) in a macro or environment that you
define. If no (family) (or (families)) is specified, the macro will insert the default
family name which is the filename of the file that is calling the macros. The macros
in this section also allow for setting an optional prefix. When using the filename
as family, uniqueness of key macros is already guaranteed. In that case, you can
omit the optional (prefiz). However, when you use a custom prefix for other keys
in your package and you want to be able to set all of the keys later with a single
command, you can use the custom prefix also for the class or package options
system.

Note that both [{arg)] and <(arg)> denote optional arguments to the macros in
this section. This syntax is used to identify the different optional arguments when
they appear next to each other.

\DeclareOptionX [(prefiz)]<(family)>{{key)} [{default)]1{(function)}

Declares an option (i.e., a key, which can also be used later on in the package in
\setkeys and friends). This macro is comparable to the standard WTEX macro
\DeclareOption, but with this command, the user can pass a value to the option
as well. Reading that value can be done by using #1 in (function). This will
contain (default) when no value has been specified for the key. The value of the
optional argument (default) is empty by default. This implies that when the user
does not assign a value to (key) and when no default value has been defined, no
error will be produced. The optional argument (family) can be used to specify a
custom family for the key. When the argument is not used, the macro will insert
the default family name.

\newif\iflandscape
\DeclareOptionX{landscape}{\landscapetrue}
\DeclareOptionX{parindent} [20pt]{\setlength\parindent{#1}}

Assuming that the file containing the example above is called myclass.cls, the
example is equivalent to

\newif\iflandscape
\def ine@key{myclass.cls}{landscape} []{\landscapetrue}
\define@key{myclass.cls}{parindent} [20pt]{\setlength\parindent{#1}}

Notice that an empty default value has been inserted by xkeyval for the landscape
option. This allows for the usual I¥TEX options use like

\documentclass [landscape] {myclass}

15

without raising No value specified for key ‘landscape’ errors.

\DeclareOptionX*{(function)}

This macro can be used to process any unknown inputs. It is comparable to the
TEX macro \DeclareOption*. Use \CurrentOption within this macro to get
the entire input from which the key is unknown, for instance unknownkey=value
or somevalue. These values (possibly including a key) could for example be passed
on to another class or package or could be used as an extra class or package option
specifying for instance a style that should be loaded.

\DeclareOptionX*{\PackageWarning{mypackage}{‘\CurrentOption’ ignored}}

The example produces a warning when the user issues an option that has not been
declared.

\ExecuteOptionsX [{prefiz)] <(families)> [(na)]{{keys)}

This macro sets keys created by \DeclareOptionX and is basically a copy of
\setkeys. The optional argument (na) specifies keys that should be ignored.
The optional argument (families) can be used to specify a list of families which
define (keys). When the argument is not used, the macro will insert the default
family name. This macro will not use the declaration done by \DeclareOptionX*
when undeclared options appear in its argument. Instead, in this case the macro
will raise an error. This mimics BTEX’s \ExecuteOptions’ behavior.

’ \ExecuteOptionsX{parindent=0pt}

This initializes \parindent to Opt.

\ProcessOptionsX [(prefiz)]<(families)>[(na)]

This macro processes the keys and values passed by the user to the class or package.
The optional argument (na) can be used to specify keys that should be ignored.
The optional argument (families) can be used to specify the families that have
been used to define the keys. Note that this macro will not protect macros in the
user inputs (like \thepage) as explained in section 7.2. When used in a class file,
this macro will ignore unknown keys or options. This allows the user to use global
options in the \documentclass command which can be copied by packages loaded
afterwards.

\ProcessOptionsX* [(prefiz)]<(families)>[(na)]

The starred version works like \ProcessOptionsX except that it also copies user
input from the \documentclass command. When the user specifies an op-
tion in the document class which also exists in the local family (or families)
of the package issuing \ProcessOptionsX*, the local key will be set as well.
In this case, #1 in the \DeclareOptionX macro will contain the value entered
in the \documentclass command for this key. First the global options from
\documentclass will set local keys and afterwards, the local options, specified

16

with \usepackage, \RequirePackage or \LoadClass (or friends), will set local
keys, which could overwrite the global options again, depending on the way the
options sections are constructed. This macro reduces to \ProcessOptionsX only
when issued from the class which forms the document class for the file at hand
to avoid setting the same options twice, but not for classes loaded later using
for instance \LoadClass. Global options that do not have a counterpart in local
families of a package or class will be skipped.

It should be noted that these implementations differ from the ITEX implementa-
tions of \ProcessOptions and \ProcessOptions*. The difference is in copying
the global options. The IWTEX commands always copy global options if possible.
As a package author doesn’t know beforehand which document class will be used
and with which options, the options declared by the author might show some
unwanted interactions with the global options. When the class and the package
share the same option, specifying this option in the \documentclass command
will force the package to use that option as well. With \ProcessOptionsX, xkeyval
offers a package author to become fully independent of the global options and be
sure to avoid conflicts with any class.

The use of \ProcessOptionsX* in a class file might be tricky since the class could
also be used as a basis for another package or class using \LoadClass. In that case,
depending on the options system of the document class, the behavior of the class
loaded with \LoadClass could change compared to the situation when it is loaded
by \documentclass. But since it is technically possible to create two classes that
cooperate, the xkeyval package allows for the usage of \ProcessOptionsX* in class
files. Notice that using I¥TEX’s \ProcessOptions or \ProcessOptionsx*, a class
file cannot copy document class options.

In case you want to verify whether your class is loaded with \documentclass
or \LoadClass, you can use the \XKV@documentclass macro which contains the
current document class.

7.2 Options with macros

The package and class option system of IXTEX contained in the kernel performs
some expansions while processing options. This prevents doing for instance

\documentclass[title=My title,author=\textsc{Me}]{myclass}

given that myclass uses xkeyval and defines the options title and author.

This problem can be overcome by redefining certain kernel commands. If you want
to offer the user this functionality for the \documentclass command, the user will
have to do \RequirePackage{xkvltxp} on the first line of the TEX file. If you
plan to use this functionality in a package, the user can use the package in the
ordinary way with \usepackage{xkvltxp}. This package then has to be loaded
before loading the package which will use this functionality. A description of the
patch can be found in the source code documentation.

The examples below summarize this information. The first example shows the
case in which we want to allow for macros in the \documentclass command.

17

\RequirePackage{xkvltxp}

\documentclass[title=My title,author=\textsc{Me}]{myclass}
\begin{document}

\end{document}

The second example shows the case in which we want to allow for macros in a
\usepackage command.

\documentclass{article}
\usepackage{xkvltxp}

\usepackage [footer=page~\thepage.]{mypack}
\begin{document}

\end{document}

Any package or class using xkeyval and xkvltxp to process options can take options
that contain macros in their value without expanding them prematurely. However,
you can of course not use macros in options which are not of the key=value form
since they might in the end be passed on to or copied by a package which is not
using xkeyval to process options, which will then produce errors. Options of the
key=value form will be deleted from \@classoptionslist (see section 7.1) and
form no threat for packages loaded later on. Finally, make sure not to pass options
of the key=value form to packages not using xkeyval to process options since they
cannot process them. For examples see section 11.

8 List of macro structures

This section provides a list of all reserved internal macros used for key processing.
Here pre denotes a prefix, fam denotes a family and key denotes a key. These
vary per application. The other parts in internal macro names are constant. The
macros with additional XKV prefix are protected in the sense that all xkeyval macros
disallow the use of the XKV prefix. Package authors using xkeyval are responsible
for protecting the other types of internal macros.

\pre@fam@key
Key macro. This macro takes one argument. This macro will execute the
(function) of \define@key (and friends) on the value submitted through
\setkeys.

\ifpre@fam@key, \pre@fam@keytrue, \pre@fam@keyfalse
The conditional created by \define@boolkey with parameters pre, fam and
key. The true and false macros are used to set the conditional to \iftrue
and \iffalse respectively.

\pre@fam@key@cmd
The macro to which input to \setkeys for key will be stored if this key has
been defined by \define@cmdkey.

\pre@fam@key@default
Default value macro. This macro expands to \pre@fam@key{default valuel}.
This macro is defined through \define@key (and friends).

18

\XKV@pre@fam@key@value
This macro is used to store the value that has been submitted through
\setkeys to the key macro (without replacing pointers).

\XKV@pre@fam@save
Contains the names of the keys that should always be saved when they
appear in a \setkeys command. This macro is defined by \savekeys.

\XKV@pre@fam@preseth
Contains the head presets. These will be submitted to \setkeys before
setting user input. Defined by \presetkeys.

\XKV@pre@fam@presett
Contains the tail presets. These will be submitted to \setkeys after setting
user input. Defined by \presetkeys.

An important remark should be made. Most of the macros listed above will be
constructed by xkeyval internally using \csname...\endcsname. Hence almost
any input to the macros defined by this package is possible. However, some inter-
nal macros are defined to be used outside xkeyval macros as well. These are the
macros \ifpre@fam@key and \pre@fam@key@cmd. To be able to use these macros
yourself, none of the input parameters should contain a non-letter characters. If
you feel that this is somehow necessary anyway, there are several strategies to
make things work.

Let us consider as example the following situation (notice the hyphen - in the
family name).

\define@boolkey{some-fam}{myif}
\def ine@cmdkey{some-fam}{mycmd}
\setkeys{some-fam}{myif=false,mycmd=save this}

Using these keys in a \setkeys command is not a problem at all. However, if you
want to use the \ifKV@some-fam@myif command itself, you can do either

\edef\savedhyphencatcode{\the\catcode ‘\-}/,
\catcode‘\-=11\relax
\def\mymacro{/
\ifKV@some-fam@myif
% true case
\else
% false case
\fi}
\catcode ‘\-=\savedhyphencatcode

or

\def\mymacro{/
\csname ifKV@some-fam@myif\endcsname
% true case
\else
% false case

\fi}

19

9 Warnings and errors

There are several points where xkeyval performs a check and could produce a
warning or an error. All possible warnings or and error messages are listed below
with an explanation. Here pre denotes a prefix, name denotes the name of a
key, fam denotes a family, fams denotes a list of families and val denotes some
value. These vary per application. Note that messages 1 to 7 could result from
erroneous key setting through \setkeys, \setrmkeys, \ExecuteOptionsX and
\ProcessOptionsX.

1) boolean can only be ‘true’ or ‘false’ (error)
A value other than true or false has been submitted to a boolean key.

2) ‘name’ undefined in families ‘fams’ (error)
The key name is not defined in the families in fams. Probably you mistyped
name.

3) no key specified for value ‘val’ (error)

xkeyval found a value without a key, for instance something like =value,
when setting keys.

4) no value recorded for key ‘name’ (error)
You have used a pointer to a key for which no value has been saved previously.

5) back linking pointers; pointer replacement canceled (error)
You were back linking pointers. Further pointer replacements are canceled
to avoid getting into an infinite loop. See section 4.2.

6) no value specified for key ‘name’ (error)
You have used the key ‘name’ without specifying any value for it (namely,
\setkeys{fam}{name} and the key does not have a default value. Notice
that \setkeys{fam}{name=1} submits the empty value to the key macro and
that this is considered a legal value.

7) key ‘name’ has been disabled (warning)
The key that you try to set has been disabled and cannot be used anymore.

8) ‘XKV’ prefix is not allowed (error)
You were trying to use the XKV prefix when defining or setting keys. This
error can be caused by any xkeyval macro having an optional prefix argument.

9) key ‘name’ undefined (error)
This error message is caused by trying to disable a key that does not exist.
See section 2.5.

10) no save keys defined for ‘pre@fam@’ (error)
You are trying to delete or undefine save keys that have not been defined
yet. See section 4.1.

11) no presets defined for ‘pre@fam@’ (error)
You are trying to delete or undefine presets that have not been defined yet.
See section 5.

12) xkeyval loaded before \documentclass (error)
Load xkeyval after \documentclass (or in the class that is the document
class). See section 7.1.

20

10 Known issues

This package redefines keyval’s \define@key and \setkeys. This is risky in gen-
eral. However, since xkeyval extends the possibilities of these commands while still
allowing for the keyval syntax and use, there should be no problems for packages
using these commands after loading xkeyval. The package prevents keyval to be
loaded afterwards to avoid these commands from being redefined again into the
simpler versions. For packages using internals of keyval, like \KV@@sp@def, \KV@do
and \KV@errx, these are provided separately in keyval.tex.

The advantage of redefining these commands instead of making new commands is
that it is much easier for package authors to start using xkeyval instead of keyval.
Further, it eliminates the confusion of having multiple commands doing similar
things.

A potential problem lies in other packages that redefine either \define@key or
\setkeys or both. Hence particular care has been spend to check packages for
this. Only one package has been found to do this, namely pst-key. This package
implements a custom version of \setkeys which is specialized to set PSTricks [5, 6]
keys of the form \psset@somekey. xkeyval also provides the means to set these
kind of keys (see page 4) and work is going on to convert PSTricks packages to be
using a specialization of xkeyval instead of pst-key. This specialization is available
in the pst-xkey package [1], which is distributed with the xkeyval package. How-
ever, since a lot of authors are involved and since it requires a change of policy, the
conversion of PSTricks packages might take some time. Hence, at the moment of
writing, xkeyval will conflict with pst-key and the PSTricks packages using pst-key,
which are pst-circ, pst-eucl, pst-fr3d, pst-geo, pst-gr3d, pst-labo, pst-lens, pst-ob3d,
pst-optic, pst-osci, pst-poly, pst-stru, pst-uml and pst-vue3d.

Have a look at the PSTricks website [5] to find out if the package that you want
to use has been converted already. If not, load an already converted package (like
pstricks-add) after loading the old package to make them work.

11 Source and examples

To generate the source code documentation, find the source of this package,
xkeyval.dtx in your local TEX installation or on CTAN and perform the fol-
lowing steps.

latex xkeyval.dtx

latex xkeyval.dtx

bibtex xkeyval

makeindex -s gglo.ist -o xkeyval.gls xkeyval.glo
makeindex -s gind.ist -o xkeyval.ind xkeyval.idx
latex xkeyval.dtx

latex xkeyval.dtx

If you only want to produce the package and example files from the source, then
the first step is sufficient. This step will generate the package files (xkeyval.tex,
xkeyval.sty, xkvltxp.sty, keyval.tex and xkvtxhdr.tex) and the example

21

files.

The file xkvex1.tex provides an example for TEX users for the macros described in
sections 2, 3, 4 and 5. The file xkvex2.tex provides an example for ATEX users for
the same macros. The files xkvex3.tex, xkveca.cls, xkvecb.cls, xkvesa.sty,
xkvesb.sty and xkvesc. sty together form an example for the macros described in
section 7.1. The set of files consisting of xkvex4.tex, xkveca.cls, xkvecb.cls,
xkvesa.sty, xkvesb.sty and xkvesc.sty provides an example for section 7.2.
These files also demonstrate the possibilities of interaction between packages or
classes not using xkeyval and packages or classes that do use xkeyval to set options.

12 Implementation

12.1 TgX program

Avoid loading xkeyval.tex twice.

1 %<*tex>
2 \csname XKeyValLoaded\endcsname
3 \let\XKeyValLoaded\endinput

Adjust some catcodes to define internal macros.

4 \edef\XKVcatcodes{’
5 \catcode‘\noexpand\@\the\catcode‘\@\relax
6 \catcode ‘\noexpand\=\the\catcode ‘\=\relax
7 \catcode ‘\noexpand\, \the\catcode\, \relax
8 \catcode‘\noexpand\:\the\catcode‘\:\relax
9 \let\noexpand\XKVcatcodes\relax

10 }

11 \catcode ‘\@11\relax

12 \catcode ‘\=12\relax

13 \catcode‘\,12\relax

14 \catcode ‘\:12\relax

Initializations. This package uses a private token to avoid conflicts with other
packages that use BTEX scratch token registers in key macro definitions (for in-
stance, graphicx, keys angle and scale).

15 \newtoks\XKV@toks
16 \newif\ifXKV@st

17 \newif\ifXKV@sg

18 \newif\ifXKV@pl

19 \newif\ifXKVQknf
20 \newif\ifXKV@rkv
21 \newif\ifXKV@inpox
22 \1et\XKVO@rm\Qempty

Load BTEX primitives if necessary and provide information.

23 \ifx\ProvidesFile\@undefined

24 \message{2005/01/30 v2.0 key=value parser (HA)}

25 \input xkvtxhdr.tex

26 \else

27 \ProvidesFile{xkeyval.tex}[2005/01/30 v2.0 key=value parser (HA)]
28 \Qaddtofilelist{xkeyval.tex}

29 \fi

22

\@efirstoftwo
\@secondoftwo

\XKV@afterfi
\XKV@afterelsefi

\XKV@ifundefined

\@ifnextcharacter
\@ifncharacter

Two utility macros from the latex.1ltx needed for executing \XKV@ifundefined
in the sequel.

30 \long\def\@firstoftwo#1#2{#1}
31 \long\def\@secondoftwo#1#2{#2}

Two utility macros to move content of a conditional branch after the \fi. This
avoids nesting conditional structures too deep.

32 \long\def\XKV@afterfi#1\fi{\fi#1}
33 \long\def\XKV@afterelsefi#1\else#2\fi{\fi#1}

{(csname) Y (undefined) }H (defined)}

Executes (undefined) if the control sequence with name (csname) is undefined,
else it executes (defined). This macro uses e-TEX if possible to avoid filling TEX’s
hash when checking control sequences like key macros in the rest of the package.
\XKV@afterelsefi is necessary here to avoid TEX picking up the second \fi as
end of the main conditional when \ifcsname is undefined. For \XKV@afterelsefi
this \fi is hidden in the group used to define \XKV@ifundefined in branch of
the case that \ifcsname is defined. Notice the following. Both versions of the
macro leave the tested control sequence undefined. However, the first version will
execute (undefined) if the control sequence is undefined or \relax, whereas the
second version will only execute (undefined) if the control sequence is undefined.
This is no problem for the applications in this package.

34 \ifx\ifcsname\@undefined\XKV@afterelsefi

35 \def\XKV@ifundefined#1{%

36 \begingroup\expandafter\expandafter\expandafter\endgroup
37 \expandafter\ifx\csname#1\endcsname\relax
38 \expandafter\@firstoftwo

39 \else

40 \expandafter\@secondoftwo

41 \fi

42}

43 \else

44 \def\XKV@ifundefined#1{/,

45 \ifcsname#1\endcsname

46 \expandafter\@secondoftwo

47 \else

48 \expandafter\@firstoftwo

49 \fi

50

51 \fi

Check whether keyval has been loaded and if not, load keyval primitives and prevent
keyval from being loaded after xkeyval.

52 \XKV@ifundefined{ver@keyval.sty}{

53 \input keyval.tex

54 \expandafter\def\csname ver@keyval.sty\endcsname{1999/03/16}

55 3}

Check the next character independently of its catcode. This will be used to safely
perform \@ifnextcharacter+ and \@ifnextcharacterx*. This avoids errors in
case any other package changes the catcode of these characters.

Contributed by Donald Arseneau.

23

\XKVe@whilist

\XKVewhe@list

\XKVewh@l@st

\XKV@for

56 \long\def\@ifnextcharacter#1#2#3{},
57 \@ifnextchar\bgroup

58 {\@ifnextchar{#1}{#2}{#3}}

59 {\@ifncharacter{#1}{#2}{#3}}/

60 }

61 \long\def\@ifncharacter#1#2#3#4{/,
62 \if\string#1\string#4J,

63 \expandafter\@firstoftwo
64 \else

65 \expandafter\@secondoftwo
66 \fi

67 {#2}{#3}#4/,

68 ¥

(emd) :=(list)\do(if)\fi{(function)}

Based on \XKV@for. Execution of (function) stops when either the list has ran
out of elements or (if) is not true anymore. When using \iftrue for (if), the
execution of the macro is the same as that of \XKV@for, but contains an additional
check and is hence less efficient than \XKV@for in that situation.

69 \long\def\XKV@whilist#1:=#2\do#3\fi#4{%

Check whether the condition is true and start iteration.

70 #3\expandafter\XKVOwh@list#2,\@nil,\@nil\Q@@#1#3\fi{#4}\fi

71}

Performs iteration and checks extra condition. This macro is not optimized for
the case that the list contains a single element.

72 \long\def\XKV@wh@list#1,#2\Q0#3#4\fi#5{},

Define the running (cmd) in a group to keep it local in case we have to exit the
loop.

73 \begingroup\def#3{#1}\expandafter\endgroup

If we find the end of the list, stop.

74 \ifx#3\@nnil

75 \expandafter\XKV@wh@l@st

76 \else

If the condition is met, define the running (c¢md), execute (function) and continue.
Otherwise stop.

77 #47,

78 \def#3{#1}#5\expandafter\expandafter\expandafter\XKVOwh@list
79 \else

80 \expandafter\expandafter\expandafter\XKVOwh@l@st

81 \fi

82 \fi

83 #2\Qo#3#4\fi{#5}Y,

84 }

Macro to gobble remaining input.
85 \long\def\XKV@wh@1@st#1\0@#2#3\fi#4{}

(emd) :=(list)\do{(function)}
Based on \@for, but also starts execution of {function) when (list) is empty. This
is done to support packages that use the ‘empty family’, like PSTricks. The macro

24

\XKV@addtomacro@n

\XKV@addtomacro@o

\XKV@addtolist@n

\XKV@addtolist@o

\XKV@addtolist@x

\@selective@sanitize
\@s@lective@sanitize

executes (function) while (if) is valid. At every iteration, the first element will be
taken from (list) and (cmd) will be defined to expand to this element. Execution
stops when the list has ran out of elements.

86 \long\def\XKV@for#1:=#2\do#3{\expandafter\@forloop#2,\0nil, \@nil\@o#1{#3}}

{(macro)}{(content)}
Adds (content) to (macro) without expanding it.

87 \def\XKV@addtomacro@n#1#2{\expandafter\def\expandafter#i\expandafter{#1#2}}

{(macro)}{{content)}
Adds (content) to (macro) after expanding the first token of {content) once.

88 \def\XKV@addtomacro@o#1#2{J,
89 \expandafter\expandafter\expandafter\def\expandafter\expandafter

90 \expandafter#1l\expandafter\expandafter\expandafter{\expandafter#1#23}/,
91 }
{({emd)}{(token)}

Adds (token) to the list in (¢md) without expanding (token).

92 \def\XKV@addtolist@n#1#2{%
93 \ifx#1\Qempty

94 \XKV@addtomacro@n#1{#2}/
95 \else

96 \XKV@addtomacro@n#1i{,#2}%
97 \fi

98 }

{{emd)}{(token)}

Adds (token) to the list in (e¢md) after expanding (token) once.

99 \def\XKV@addtolist@o#1#2{/,
100 \ifx#1\@empty

101 \XKV@addtomacro@o#1#2,
102 \else
103 \XKV@addtomacroQo#1{\expandafter,#2}/,
104 \fi
105 }
{{emd)}{(token)}

Adds (token) to the list in (c¢md) after a full expansion of both (¢md) and (token).
106 \def\XKV@addtolist@x#1#2{\edef#1{#1\ifx#1\Qempty\else, \fi#2}}

[(level)1{{character string)}{{cmd)}

Converts selected characters, given by (character string), within the first-level ex-
pansion of {emd) to category code 12, leaving all other tokens (including grouping
braces) untouched. Thus, macros inside (c¢md) do not lose their function, as it is
the case with \@onelevel@sanitize. The resulting token list is again saved in
{emd).

Example: \def\cs{ “{\fi}~} and \@selective@sanitize{! " }\cs will change
the catcode of ‘~’ to other within \cs, while \fi and ‘~’ will remain unchanged.
As the example shows, unbalanced conditionals are allowed.

Remarks: (c¢md) should not contain the control sequence \bgroup; however,
\csname bgroup\endcsname and \egroup are possible. The optional {level) com-
mand controls up to which nesting level sanitizing takes place inside groups; 0 will

25

\@s@l@ctive@sanitize

only sanitize characters in the top level, 1 will also sanitize within the first level
of braces (but not in the second), etc. The default value is 10000.
107 \def\@selective@sanitize{\@testopt\@s@lective@sanitize\OM}

108 \def\@s@lective@sanitize [#1]#2#3{Y
109 \begingroup

110 \count@#1\relax\advance\count@\@ne

111 \XKV@toks\expandafter{#3}/

112 \def#3{#2}\@onelevel@sanitize#3,

113 \edef#3{{#3}{\the\XKVQtoks}}

114 \expandafter\Q@s@l@ctive@sanitize\expandafter#3#3

115 \expandafter\endgroup\expandafter\def\expandafter#3\expandafter{#3}/
116 ¥

{{emd)}{ (sanitized character string)}{(token list)}

Performs the main work. Here, the characters in (sanitized character string) are
already converted to catcode 12, (token list) is the first-level expansion of the
original contents of (¢md). The macro basically steps through the (token list),
inspecting each single token to decide whether it has to be sanitized or passed to
the result list. Special care has to be taken to detect spaces, grouping characters
and conditionals (the latter may disturb other expressions). However, it is easier
and more efficient to look for TEX primitives in general — which are characterized
by a \meaning that starts with a backslash — than to test whether a token equals
specifically \if, \else, \fi, etc. Note that \@s@l@ctive@sanitize is being called
recursively if (token list) contains grouping braces.

117 \def\@s@l@ctive@sanitize#1#2#3{},
118 \def\@i{\futurelet\@@tok\@iil}},
119 \def\@ii{%

120 \expandafter\@iii\meaning\@@tok\relax

121 \ifx\Q@@tok\@s@l@ctive@sanitize

122 \let\@@cmd\@gobble

123 \else

124 \ifx\@@tok\@sptoken

125 \XKV@toks\expandafter{#1}\edef#1{\the\XKVQtoks\spacel,
126 \def\@@cmd{\afterassignment\@i\let\@@tok= 1}/,
127 \else

128 \let\@@cmd\@iv

129 \fi

130 \fi

131 \@@cmd

132 Y

133 \def\@iii##1##2\relax{\if##1\@backslashchar\let\@@tok\relax\fil}}
134 \def\@iv##1{J

135 \toks@\expandafter{#1}\XKVQ@toks{##1}/

136 \ifx\@@tok\bgroup

137 \advance\count@\m@ne

138 \ifnum\count@>\z@

139 \begingroup

140 \def#1{\expandafter\0s@l@ctive@sanitize

141 \csname\string#1\endcsname{#2}}/

142 \expandafter#1\expandafter{\the\XKV@toks}/,
143 \XKV@toks\expandafter\expandafter\expandafter
144 {\csname\string#1\endcsname}%

145 \edef#1{\noexpand\XKV@toks{\the\XKV@toks}}%

26

\XKV@checksanitizea

\XKV@checksanitizeb

\XKV@ch@cksanitize

146 \expandafter\endgroup#17

147 \fi

148 \edef#1{\the\toks@{\the\XKV@toks}}/,

149 \advance\count@\@ne

150 \let\@@cmd\@i

151 \else

152 \edef#1{\expandafter\string\the\XKV@toks}

153 \expandafter\in@\expandafter{#1}{#21}/,

154 \edef#1{\the\toks@\ifin@#1\else

155 \ifx\@@tok\@sptoken\space\else\the\XKVQ@toks\fi\fi}},
156 \edef\@@cmd{\noexpand\@i\ifx\@@tok\@sptoken\the\XKVQtoks\fil}}
157 \fi

158 \@@cmd

159 Y

160 \let#1\@empty\@i#3\@s@l@ctive@sanitize

161 }

Check whether the content #1, to be saved to macro #2 contains the characters =
or , with wrong catcodes. If so, sanitize them.

162 \def\XKV@checksanitizea#1#2{%

163 \XKV@ch@cksanitize{#1}#2=%

164 \ifin@\else\XKV@ch@cksanitize{#1}#2,\fi

165 \ifin@\@selective@sanitize[0]{,=}#2\fi

166 }

Similar to \XKV@checksanitizea, but only checks commas.

167 \def\XKV@checksanitizeb#1#2{},

168 \XKV@ch@cksanitize{#1}#2,%

169 \ifin@\@selective@sanitize[0],#2\fi
170 }

{{character string)}{(token list)}{(token)}

This macro first check whether at least one (token) is in (character string). If that
is the case, it checks whether the character has catcode 12. Note that the macro
will conclude that the character does not have catcode 12 when it is used inside a
group {2}, but that is not a problem, as we don’t expect (token) (namely , or =)
inside a group, unless this group is in a value. But we won’t worry about those
characters anyway since the relevant key macro will have to process that.

171 \def\XKV@ch@cksanitize#1#2#3{/,

172 \def#2{#1}/,

173 \Qonelevel@sanitize#2},

Check whether there is at least one = present.

174 \Q@expandtwoargs\in@#3{#21}7

175 \ifin@

If so, try to find it. If we can’t find it, the character(s) has (or have) the wrong
catcode. In that case sanitizing is necessary. This actually occurs, because the
input was read by TEX before (and for instance stored in a macro or token register).

176 \def#2##1#3##2\Onil{%

177 \def#2{##2}/
178 \ifx#2\Q@empty\else\in@false\fi
179 Y

180 #2#1#3\0nil

27

\XKV@merge

181 \fi
182 \def#2{#1}%
183 }

This is a merging macro. For a given new item, the old items are scanned. If
an old item key name matches with a new one, the new one will replace the old
one. If not, the old one will be appended (and might be overwritten in a following
loop). If, at the end of the old item loop the new item has not been used, it will be
appended to the end of the list. This macro works irrespective of special syntax.
The macro in argument #3 is used to filter the key name from the syntax. All
occurrences of a particulary key in the existing list will be overwritten by the new
item. This macro is used to make \savekeys and \presetkeys incremental. The
macro #3 is \XKV@getsg and \XKV@getkeyname respectively.

184 \def\XKV@merge#1#2#3{/

185 \XKV@checksanitizea{#2}\XKV@tempa

We have to do merging. Start the loop over the new presets. At every iteration,
one new preset will be checked with old presets.

186 \@for\XKV@tempa:=\XKV@tempa\do{%
187 \XKV@pltrue

Retrieve the key name of the new preset at hand.

188 #3\XKV@tempa\XKV@tempb

Store the (partially updated) old presets in a temp macro and empty the original
macro.

189 \let\XKV@tempc#1%
190 \let#1\@empty

Start a loop over the old values.
191 \@for\XKV@tempc : =\XKV@tempc\do{/
Retrieve the key name of the old key at hand.

192 #3\XKV@tempc\XKV@tempd

193 \1fx\XKV@tempb\XKV@tempd

If the key names are equal, append the new preset to the list and record that this
key should not be added to the end of the presets list.

194 \XKV@plfalse
195 \XKV@addtolist@o#1\XKV@tempa
196 \else

If the key names are not equal, then just append the current preset to the list.

197 \XKV@addtolist@o#1\XKV@tempc
198 \fi
199 Yh

If, after checking the old presets, no old preset has been overwritten then append
the new preset to the end of the list.

200 \1fXKV@pl\XKV@addtolist@o#1\XKV@tempa\fi
201 Y

If requested, save the new list globally.

202 \ifXKV@st\global\let#1#1\fi
203 }

28

\XKV@delete

\XKV@warn
\XKV@err
\KV@err
\KV@errx

\XKV@ifstar
\XKV@ifplus

\XKV@sp@deflist

Delete entries by key name from a list of presets or save keys. #1 is the macro
currently holding the list to be updated. #2 is the list of entries that should be
removed and #3 is the macro that should be used to retrieve the key name from
an entry. For \delpresetkeys this is \XKV@getkeyname and for \delsavekeys it
is \XKV@getsg.

204 \def\XKV@delete#1#2#3{}

Sanitize comma’s.

205 \XKV@checksanitizeb{#2}\XKV@tempa

Copy the current list and make the original empty.

206 \let\XKV@tempb#17
207 \let#1\@empty

Run over the current list.

208 \@for\XKV@tempb:=\XKV@tempb\do{%

Get the key name to identify the current entry.
209 #3\XKV@tempb\XKV@tempc

If the current key name is in the list, do not add it anymore.

210 \@expandtwoargs\in@{, \XKV@tempc, }{, \XKV@tempa, }%
211 \ifin@\else\XKV@addtolist@o#1\XKV@tempb\fi
212 Y

Save globally is necessary.

213 \ifXKV@st\global\let#1#1\fi
214 }

Warning and error macros. We redefine the keyval error macros to use the xkeyval
ones. This avoids redefining them again when we redefine the \XKV@warn and
\XKVQ@err macros in xkeyval.sty.

215 \def\XKV@warn#1{\message{xkeyval warning: #1}}

216 \def\XKV@err#1{\errmessage{xkeyval error: #1}}

217 \def\KVQ@errx{\XKVQerr}

218 \let\KVQ@err\KV@errx

Checks whether the following token is a * or +. Use \XKV@ifnextchar to perform
the action safely and ignore catcodes.

219 \def\XKV@ifstar#1{\@ifnextcharacter*x{\@firstoftwo{#1}}}
220 \def\XKV@ifplus#1{\@ifnextcharacter+{\@firstoftwo{#1}}}

{{emd)}{ (token)}

Defines (e¢md) as (token) after removing spaces surrounding elements of the list
in (token). So, keya, key b becomes keya,key b. This is used to remove spaces
from around elements in a list. Using \zap@space for this job, would also remove
the spaces inside elements and hence changing key or family names with spaces.
This method is slower, but does allow for spaces in key and family names, just
as keyval did. We need this algorithm at several places to be able to perform
\in@{,key,}{,...,}, without having to worry about spaces in between commas
and key names.

221 \def\XKV@sp@deflist#1#2{Y

222 \let#1\@empty

223 \def\XKV@resa{#2}

29

\XKV@makepf

\XKV@makehd

\XKV@testopta
\XKV@t@stopta
\XKV@t@st@pta
\XKV@et@st@pta

224 \@for\XKV@resa:=\XKV@resa\do{%

225 \expandafter\KV@@sp@def\expandafter\XKV@resa\expandafter{\XKVQresal},
226 \edef#1{#1,\XKV@resal/,
227}

228 \ifx#1\Qempty\else
229 \def\XKV@resa, ##1\@nil{\def#1{##1}}Y

230 \expandafter\XKV@resa#1\@nil
231 \fi
232 }

This macro creates the prefix, like prefix@ in \prefix@family@key. First it
deletes spaces from the input and checks wether it is empty. If not empty, an
@-sign is added. The use of the XKV prefix is forbidden to protect internal macros
and special macros like saved key values.

233 \def\XKV@makepf#1{/

234 \KV@@sp@def\XKV@prefix{#1}/,

235 \def\XKV@resa{XKV}/,

236 \ifx\XKV@prefix\XKV@resa

237 \XKV@err{‘XKV’ prefix is not allowedl}’
238 \let\XKV@prefix\@empty

239 \else

240 \ifx\XKV@prefix\Qempty\else

241 \edef\XKV@prefix{\XKV@prefix @1}

242 \fi

243 \fi

244 }

Creates the header, like prefix@family@ in \prefix@family@key. If family is
empty, the header reduces to prefix@.

245 \def \XKV@makehd#1{},

246 \expandafter\KV@@sp@def\expandafter\XKV@header\expandafter{#1}J

247 \ifx\XKV@header\Qempty

248 \let\XKV@header\XKV@prefix

249 \else

250 \edef\XKV@header{\XKV@prefix\XKV@header @}%
251 \fi

252 }

Optional argument testing. Used for instance by \setkeys.

253 \def \XKV@testopta#1{y

254 \XKV@ifstar{\XKV@sttrue\XKV@t@stopta#1}{\XKV@stfalse\XKVOtOstopta#1l}},
255 }

256 \def \XKV@t@stopta#1{Y

257 \XKV@ifplus{\XKV@pltrue\XKV@t@st@pta#1}{\XKVeplfalse\XKV@t@st@pta#1}%
258 }

259 \def\XKVet@st@pta#l{\Ctestopt{\XKVeet@st@pta#1}{KV}}

260 \def\XKV@OtQstCpta#l [#2]#3{Y

Set prefix.
261 \XKV@makepf{#2}/,
Store families and sanitize commas.

262 \XKV@checksanitizeb{#3}\XKV@fams
263 \expandafter\XKV@sp@deflist\expandafter\XKV@fams\expandafter{\XKV@fams}y,

30

\XKV@testoptb
\XKV@t@stoptb

\XKV@ifcmd
\XKV@@ifcmd

\XKV@getkeyname
\XKV@g@tkeyname

\XKV@getsg

264 \O@testopt#1{}/,
265 }

Optional argument testing. Used for instance by \define@key.
266 \def\XKV@testoptb#1{\@testopt{\XKV@t@stoptb#1}{KV}}

267 \def\XKV@t@stoptb#1 [#2] #3{/

Set prefix.

268 \XKV@makepf{#2}/,

Set header.

269 \XKVemakehd{#3}%

Save family name for later use.

270 \KV@@sp@def\XKVetfam{#3}/,
271 #1%
272 }

{(tokens)H (macro) }H (cmd)H (yes)H(no)}

This macro checks whether the (tokens) contains the macro specification (macro).
If so, the argument of this macro will be saved to (¢cmd) and (yes) will be executed.
Otherwise, the content of (tokens) is saved to (¢md) and (no) is executed. This
macro will, for instance, be used to distinguish key and \global{key}.

273 \def \XKV@ifcmd#1#2#3{%
274 \def\XKVQ@Q@ifcmd##1#2##2##3\Onil##4{Y,

275 \def##4{##2}\ifx##4\Onnil

276 \def##4{##1}\expandafter\@secondoftwo
277 \else

278 \expandafter\@firstoftwo

279 \fi

280 }

281 \XKV@Qifcmd#1#2{\@nil}\@nil#3Y%

282 }

Utility macros to retrieve the key name from key=value, \savevalue{key}=value
or \gsavevalue{key}=value. \ifXKV@rkv will record whether this particular
value should be saved or not. \ifXKV@sg will record whether this value should be
saved globally or not.
283 \def \XKV@getkeyname#1#2{\expandafter\XKV@g@tkeyname#1=\0Gnil#2}
284 \def \XKV@g@tkeyname#1=#2\0nil#3{%
285 \XKV@ifcmd{#1}\savevalue#3{\XKV@rkvtrue\XKV@sgfalse}{/,

286 \XKV@ifcmd{#1}\gsavevalue#3/,

287 {\XKVerkvtrue\XKV@sgtrue}{\XKVerkvfalse\XKV@sgfalsel}’
288 1%

289 }

Utility macro to check whether key or \global{key} has been specified in
\savekeys.

290 \def\XKV@getsg#i#2{/,

291 \expandafter\XKV@ifcmd\expandafter{#1}\global#2\XKV@sgtrue\XKV@sgfalse
292 }

31

\def ine@key

\XKV@define@key

\XKV@def ine@kQy

\define@boolkey

\XKV@define@boolkey

\XKVedef ine@boolkey

\XKV@setbool

Macro to define a key in a family. Original but modified keyval code. Notice the
use of the KV prefix as default prefix. This is done to allow setting both keyval and
xkeyval keys with a single command.

293 \def\define@key{\XKV@testoptb\XKV@defineQkey}

Workhorse for \define@key.
294 \def\XKV@define@key#1{}
Define the key macro.

295 \@ifnextchar [{\XKV@define@kQy{#1}}{/
296 \expandafter\def\csname\XKV@header#1\endcsname####1}/,
297 }

Defines a key macro and a default value macro.

208 \def\XKV@dQfine@ky#1 [#2] {/
299 \expandafter\def\csname\XKV@header#1@default\expandafter\endcsname

300 \expandafter{\csname\XKV@header#1\endcsname{#2}1}/,
301 \expandafter\def\csname\XKV@header#1\endcsname##17
302 }

Defines a boolean key.
303 \def\define@boolkey{\XKV@testoptb\XKV@define@boolkey}

Workhorse for \define@boolkey.

304 \def\XKV@define@boolkey#1{J,

Create the conditional.

305 \expandafter\newif\csname if\XKV@header#1\endcsname
Create the key function.

306 \expandafter\edef\csname\XKV@header#1\endcsname##1},

307 {\noexpand\XKV@setbool{\XKV@header#1}{##1}1}/,
308 \@ifnextchar [{\XKV@d@fine@boolkey{#1}}{}V
309 }

Define the default value macro.

310 \def\XKV@dQf ine@boolkey#1 [#2]{%

311 \expandafter\def\csname\XKV@header#1@default\expandafter\endcsname
312 \expandafter{\csname\XKV@header#1\endcsname{#2}1}/

313 }

Set a boolean key.

314 \def\XKV@setbool#1#2{}

315 \def\XKV@tempa{true}’

316 \def\XKV@tempb{falsel}

317 \lowercase{\def\XKV@tempc{#2}1}/,
318 \ifx\XKV@tempc\XKV@tempa\else

319 \ifx\XKV@tempc\XKV@tempb\else

320 \let\XKV@tempc\relax

321 \fi

322 \fi

323 \ifx\XKV@tempc\relax

324 \XKV@err{boolean can only be ‘true’ or ‘false’}}

325 \else

32

\define@cmdkey

\XKV@def ine@cmdkey

\XKV@def ine@cmdkey

\key@ifundefined

\XKV@key@ifundefined

\XKV@key@if@ndefined

326 \csname#1\XKV@tempc\endcsname
327 \fi
328 }

Defines a command key. This key will store its input in a macro for later use.
329 \def\define@cmdkey{\XKV@testoptb\XKV@define@cmdkey}

Workhorse for \define@cmdkey.

330 \def\XKV@define@cmdkey#1{/,

Create the key function.

331 \expandafter\edef\csname\XKV@header#1\endcsname##1{\noexpand\def

332 \expandafter\noexpand\csname\XKV@header#1@cmd\endcsname{##1}}/
333 \@ifnextchar [{\XKV@d@fine@cmdkey{#1}}{}%
334 }

Defines the default value macro.

335 \def \XKV@define@cmdkey#1 [#2]1{/

336 \expandafter\def\csname\XKV@header#1@default\expandafter\endcsname
337 \expandafter{\csname\XKV@header#1\endcsname{#2}1}/,

338 }

This macro allows checking if a key is defined in a family from a list of families.
339 \def\key@ifundefined{\Qtestopt\XKV@keyQ@ifundefined{KV}}

This macro is split in two parts so that \XKV@p@x can use only the main part of
the macro.
340 \def\XKV@keyQ@ifundefined [#1]#2{%

Set the prefix and save the key name and family names.

341 \XKV@makepf{#1}/,

342 \XKV@sp@deflist\XKVOfams{#2}%
343 \XKV@key@if@ndefined

344 }

Workhorse for \key@ifundefined.

345 \def\XKV@key@if@ndefined#1{/
346 \XKV@knftrue
347 \KV@@sp@def\XKVetkey{#1}/

Loop over possible families.
348 \XKV@whilist\XKV@tfam:=\XKV@fams\do\ifXKV@knf\fi{%
Set the header.

349 \XKV@makehd\XKV@tfam

Check whether the macro for the key is defined.

350 \XKV@ifundefined{\XKV@header\XKV@tkey}{}{\XKV@knffalsel}/,
351 X%

Execute one of the final two arguments depending on state of \XKV@knf.
352 \1fXKV@knf

353 \expandafter\@firstoftwo
354 \else

355 \expandafter\@secondoftwo
356 \fi

357 }

33

\disable@keys

\XKV@disable@keys

\presetkeys
\gpresetkeys

\XKV@presetkeys

\XKV@pr@setkeys

\delpresetkeys
\gdelpresetkeys

\XKV@delpresetkeys

Macro that make a key produce a warning on use.
358 \def\disable@keys{\XKV@testoptb\XKV@disable@keys}

Workhorse for \disable@keys which redefines a key macro.
359 \def\XKV@disable@keys#1{%

360 \XKV@checksanitizeb{#1}\XKV@tempa
361 \@for\XKV@tempa:=\XKV@tempa\do{’

362 \XKV@ifundefined{\XKV@header\XKV@tempal}{%

363 \XKV@err{key ‘\XKV@tempa’ undefined},

364 H%

365 \edef\XKV@tempb{\noexpand\XKV@warn{key ‘\XKV@tempa’ has been disabled}}/
366 \XKV@ifundefined{\XKV@header\XKVQtempa @defaultl}{’

367 \edef\XKV@tempc{\noexpand\XKV@def ine@key{\XKV@tempa}1}/
368 H

369 \edef\XKV@tempc{\noexpand\XKV@defineQkey{\XKV@tempal} []1}%
370 Yh

371 \expandafter\XKV@tempc\expandafter{\XKVQ@tempbl}7,

372 Y

373 Y

374 }

This provides the presetting system. The macro works incrementally: keys that
have been preset before will overwrite the old preset values, new ones will be added
to the end of the preset list.

375 \def\presetkeys{\XKV@stfalse\XKV@testoptb\XKV@presetkeys}

376 \def \gpresetkeys{\XKV@sttrue\XKV@testoptb\XKV@presetkeys}

Executes the merging macro \XKV@pr@setkeys for both head and tail presets.
377 \def\XKV@presetkeys#1#2{%

378 \XKV@pr@setkeys{#1}{presethl}’

379 \XKV@pr@setkeys{#2}{presettl}’

380 }

Check whether presets have already been defined. If not, define them and do not
start the merging macro. Otherwise, create the control sequence that stores these
presets and start merging.

381 \def\XKV@pr@setkeys#1#2{Y
382 \XKV@ifundefined{XKV@\XKV@header#2}{/

383 \XKV@checksanitizea{#1}\XKV@tempa

384 \ifXKV@st\expandafter\global\fi\expandafter\def

385 \csname XKV@\XKV@header#2\expandafter\endcsname\expandafter{\XKV@tempalj,
386 M

387 \expandafter\XKV@merge\csname XKVQ@\XKVQheader#2\endcsname{#1}\XKV@getkeyname
388 Y%

389 }

Macros to remove entries from presets.

390 \def\delpresetkeys{\XKV@stfalse\XKV@testoptb\XKV@delpresetkeys}
391 \def\gdelpresetkeys{\XKV@sttrue\XKV@testoptb\XKV@delpresetkeys}

Run the main macro for both head tail presets.

392 \def\XKV@delpresetkeys#1#2{/
393 \XKV@d@lpresetkeys{#1}{presethl}/

34

\XKV@d@lpresetkeys

\unpresetkeys
\gunpresetkeys

\XKV@unpresetkeys

\savekeys
\gsavekeys

\XKV@savekeys

\delsavekeys
\gdelsavekeys

394 \XKV@d@lpresetkeys{#2}{presettl}/
395 }

Check whether presets have been saved and if so, start deletion algorithm. Supply
the macro \XKV@getkeyname to retrieve key names from entries.

396 \def\XKV@d@lpresetkeys#1#2{/,
397 \XKV@ifundef ined{XKV@\XKV@header#2}{%

398 \XKV@err{no presets defined for ‘\XKV@header’}J,

399}

400 \expandafter\XKV@delete\csname XKV@\XKV@header#2\endcsname{#1}\XKV@getkeyname
401 }%

402 }

Removes presets for a particular family.

403 \def\unpresetkeys{\XKV@stfalse\XKVO@testoptb\XKVQ@unpresetkeys}
404 \def\gunpresetkeys{\XKV@sttrue\XKV@testoptb\XKVQunpresetkeys}

Undefine the preset macros. We make them undefined since this will make them
appear undefined to both versions of the macro \XKV@ifundefined. Making the
macros \relax would work in the case that no e-TEX is available (hence using
\ifx\csname), but doesn’t work when e-TgX is used (and using \ifcsname).

405 \def\XKV@unpresetkeys{/
406 \XKV@ifundefined{XKV@\XKV@header preseth}{%

407 \XKV@err{no presets defined for ‘\XKV@header’}/,

408 M

409 \ifXKV@st\expandafter\global\fi\expandafter\let

410 \csname XKV@\XKV@header preseth\endcsname\@undefined
411 \ifXKV@st\expandafter\global\fi\expandafter\let

412 \csname XKV@\XKV@header presett\endcsname\@undefined
413}

414 }

Store a list of keys of a family that should always be saved. The macro works
incrementally and avoids duplicate entries in the list.

415 \def\savekeys{\XKV@stfalse\XKV@testoptb\XKV@savekeys}
416 \def\gsavekeys{\XKV@sttrue\XKVQ@testoptb\XKV@savekeys}

Check whether something has been saved before. If not, start merging.

417 \def\XKV@savekeys#1{/,
418 \XKV@ifundefined{XKV@\XKV@header save}{’

419 \XKV@checksanitizeb{#1}\XKVQ@tempa

420 \ifXKV@st\expandafter\global\fi\expandafter\def

421 \csname XKV@\XKV@header save\expandafter\endcsname\expandafter{\XKV@tempal,
422 Y

423 \expandafter\XKV@merge\csname XKV@\XKV@header save\endcsname{#1}\XKV@getsg
424 Y

425 }

Remove entries from the list of save keys.

426 \def\delsavekeys{\XKV@stfalse\XKV@testoptb\XKV@delsavekeys}
427 \def\gdelsavekeys{\XKV@sttrue\XKV@testoptb\XKV@delsavekeys}

35

\XKV@delsavekeys

\unsavekeys
\gunsavekeys

\XKVQ@unsavekeys

\setkeys

\XKV@setkeys

Check whether save keys are defined and if yes, start deletion algorithm. Use the
macro \XKV@getsg to retrieve key names from entries.

428 \def\XKV@delsavekeys#1{J
429 \XKV@ifundefined{XKV@\XKV@header savel}{’

430 \XKV@err{no save keys defined for ¢\XKV@header’l}},

431 M

432 \expandafter\XKV@delete\csname XKVQ@\XKV@header save\endcsname{#1}\XKVQ@getsg
433}

434}

Similar to \unpresetkeys, but removes the ‘save keys list’ for a particular family.

435 \def\unsavekeys{\XKV@stfalse\XKV@testoptb\XKVQunsavekeys}
436 \def\gunsavekeys{\XKV@sttrue\XKVQtestoptb\XKVQunsavekeys}

Workhorse for \unsavekeys.

437 \def\XKV@unsavekeys{/,
438 \XKV@ifundefined{XKV@\XKV@header savel}{’

439 \XKV@err{no save keys defined for ¢\XKV@header’l}}
440 H%

441 \ifXKV@st\expandafter\global\fi\expandafter\let

442 \csname XKVO\XKVG@header save\endcsname\@undefined
443}

444 }

Set keys. The starred version does not produce errors, but appends keys that
cannot be located to the list in \XKV@rm. The plus version sets keys in all families
that are supplied. Use \XKV@testopta to handle optional arguments.

445 \def\setkeys{\XKV@testopta\XKV@setkeys}

Workhorse for \setkeys.

446 \def\XKV@setkeys [#1]1#2{%

Macros to retrieve a list of keys from the user input.
447 \def\XKV@tempa##1,{/,

448 \def\XKV@tempb{##11}/,

449 \ifx\XKV@tempb\@nnillelse

450 \XKV@g@tkeyname##1=\@nil\XKV@tempb
451 \XKV@addtolist@x\XKV@kna\XKV@tempb
452 \expandafter\XKV@tempa

453 \fi

454 Yh

455 \XKV@checksanitizea{#2}\XKV@resb
456 \let\XKV@kna\Qempty
457 \expandafter\XKV@tempa\XKV@resb,\@nil,?

Initialize the remaining keys.

458 \let\XKV@rm\@empty

Initialize the macro that should be executed.

459 \let\XKV@exec\Qempty

Now scan the list of families for preset keys and set user input keys.

460 \XKV@usepresetkeys{#1}{presethl}/,
461 \expandafter\XKV@s@tkeys\expandafter{\XKV@resb}{#11}/
462 \XKV@usepresetkeys{#1}{presettl}/,

36

\XKVQusepresetkeys

\XKV@sQ@tkeys

\XKV@s@tkQys

Execute all key macros.

463 \XKV@exec
464 }

Loop over the list of families and check them for preset keys. If present, set them
right away, taking into account the keys which are set by the user.

465 \def\XKVQusepresetkeys#1#2{J,
466 \XKV@for\XKV@tfam:=\XKV@fams\do{%

467 \XKV@makehd\XKV@tfam

468 \XKV@ifundefined{XKV@\XKV@header#2}{}{%

469 \XKV@toks\expandafter\expandafter\expandafter
470 {\csname XKV@\XKV@header#2\endcsname},

471 \Q@expandtwoargs\XKV@s@tkeys{\the\XKVQtoks}/
472 {\XKVOkna\ifx\XKV@kna\Qempty\else, \fi#1}/
473 Y

474 Y

475 }

This macro starts the loop over keys.
476 \def\XKVOsQ@tkeys#1#2{Y

Define the list of key names which should be ignored.
477 \XKV@sp@deflist\XKV@kn{#2}/

Start the loop over keys.

478 \XKV@s@tkQys#1,\@nil,?%
479 }

Workhorse for \XKV@s@tkeys.

480 \def\XKV@s@tk@ys#1,{}
481 \def\XKV@tempa{#1}%
482 \ifx\XKV@tempa\O@nnil\else

483 \XKV@knftrue

Split key and value.

484 \XKV@split#1==\0@nil

Check whether the key has been found.
485 \ifXKV@knf

486 \1ifXKV@inpox

We are in the options section. Try to use the macro defined by \DeclareOptionX*.
487 \ifx\XKV@doxs\relax

For classes, ignore unknown (possibly global) options. For packages, raise the
standard ITEX error.

488 \ifx\@currext\@clsextension\else

489 \let\CurrentOption\XKV@tkey\Q@unknownoptionerror
490 \fi

491 \else

Pass the option through \DeclareOptionXx.

492 \def\CurrentOption{#1}\XKV@doxs
493 \fi
494 \else

37

If not in the options section, raise an error or add the key to the list in \XK@rm
when \setkeys* has been used.

495 \ifXKV@st

496 \XKV@addtolist@n\XKVerm{#1}Y%

497 \else

498 \XKV@err{ ‘\XKVO@tkey’ undefined in families ‘\XKV@fams’l}/,
499 \fi

500 \fi

501 \else

Remove global options set by the document class from \@unusedoptionlist.
Global options set by other packages or class will be removed by \ProcessOptionsX*.

502 \ifXKV@inpox\ifx\XKV@testclass\XKV@documentclass
503 \XKV@useoption{#11}/

504 \fi\fi

505 \fi

506 \expandafter\XKV@sQtkQys

507 \fi

508 }

\XKvesplit Macro that splits keys and values.
509 \def\XKV@split#1=#2=#3\0@nil{}
Remove spaces from key name and check for \savevalue and \gsavevalue.
510 \XKV@g@tkeyname#1=\@nil\XKV@tkey
511 \expandafter\KV@@sp@def\expandafter\XKV@tkey\expandafter{\XKV@tkeyl}/,
If the key is empty and a value has been specified, generate an error.

512 \ifx\XKV@tkey\@empty
513 \ifx\Qempty#2\Q@empty\else

514 \XKV@toks{#2}%

515 \XKV@err{no key specified for value ‘\the\XKV@toks’}/
516 \fi

517 \XKV@knffalse

518 \else

If in the \XKV@kn list, ignore the key.

519 \@expandtwoargs\in@{, \XKV@tkey, }{, \XKV@kn, }%
520 \ifin@\XKV@knffalse\else
521 \KV@@sp@def \XKV@tempa{#21}/,

Check global setting by \savekeys to know whether or not to save the value of
the key at hand.

522 \XKV@ifundefined{XKV@\XKV@header save}{}{%

523 \expandafter\XKV@testsavekey\csname XKV@\XKV@header save\endcsname\XKV@tkey
524 iy

Save the value of a key.

525 \ifXKvVerkv

526 \1fXKV@sg\expandafter\global\fi\expandafter\let

527 \csname XKV@\XKV@header\XKV@tkey @value\endcsname\XKV@tempa

528 \fi

Replace pointers by saved values.

529 \expandafter\XKV@replacepointers\expandafter{\XKV@tempaly,
530 \ifXKV@pl

38

\XKV@testsavekey

\XKV@replacepointers
\XKV@r@placepointers

If a command with a + is used, set keys in all families on the list.

531 \XKVefor\XKVOtfam: =\XKVefams\do{%

532 \XKV@makehd\XKVQtfam

533 \expandafter\XKV@setkey@infam\expandafter{\XKV@tempa}{#31}/,
534 Yh

535 \else

Else, scan the families on the list but stop when the key is found or when the list
has run out.

536 \XKV@whilist\XKV@tfam:=\XKV@fams\do\ifXKV@knf\fi{%

537 \XKV@makehd\XKV@tfam

538 \expandafter\XKV@setkey@infam\expandafter{\XKV@tempal}{#31}J,
539 Y

540 \fi

541 \fi

542 \fi

543 }

This macro checks whether the key in macro #2 appears in the save list in macro
#1. Furthermore, it checks whether or not to save the key globally. In other words,
that \global{key} is in the list.

544 \def\XKVQ@testsavekey#1#2{/,
545 \ifXKV@rkv\else

546 \@for\XKV@resa:=#1\do{%

547 \expandafter\XKV@ifcmd\expandafter{\XKV@resa}\global\XKV@resa{’,
548 \ifx#2\XKV@resa

549 \XKVe@rkvtrue\XKV@sgtrue
550 \fi

551 H%

552 \ifx#2\XKV@resa

553 \XKV@rkvtrue\XKV@sgfalse
554 \fi

555 o

556 Y

557 \fi

558 }

Replaces all pointers by their saved value. The result is stored in #4. We feed
the replacement and the following tokens again to the macro to replace nested
pointers. It stops when no pointers are found anymore.

559 \def\XKV@replacepointers#1{/

560 \let\XKV@tempa\@empty

561 \let\XKV@resa\@empty

562 \XKV@r@placepointers#1\usevalue\@nil
563 }

564 \def\XKV@r@placepointers#1\usevalue#2{/
565 \XKV@addtomacro@n\XKV@tempa{#1}%

566 \ifx\@nil#2\relax\else\XKV@afterfi

567 \XKV@ifundefined{XKV@\XKV@header#2@value}{%

568 \XKV@err{no value recorded for key ‘#2°; ignoredl}/
569 \XKV@r@placepointers

570 H%

571 \@expandtwoargs\in@{,#2,}{, \XKV@resa, }%

572 \ifin@\XKV@afterelsefi

39

\XKV@setkey@infam

573 \XKV@err{back linking pointers; pointer replacement canceled}/,
574 \else\XKV@afterfi

575 \XKV@addtolist@x\XKV@resa{#2}%

576 \expandafter\expandafter\expandafter\XKV@r@placepointers

577 \csname XKV@\XKV@header#2@value\endcsname

578 \fi

579 Yh

580 \fi

581 }

Sets a key in a family. Based on keyval code.
582 \def\XKV@setkey@infam#1#2{J,

583

\XKV@ifundefined{\XKV@header\XKVetkey}{}{%

Check whether the key macro is defined.

584
585

\XKV@knffalse
\ifx\@empty#2\Q@empty

No value given, use default.

586
587
588

\XKV@ifundefined{\XKV@header\XKVO@tkey @default}{’
\XKV@err{no value specified for key ‘\XKV@tkey’l}J
o

Execute key with the default value.

589 \expandafter\expandafter\expandafter\XKV@default
590 \csname\XKV@header\XKV@tkey @default\endcsname\@nil
591 iy
592 \else
Add key macro and its value to the execution macro.
593 \XKV@addtomacro@o\XKV@exec{\csname\XKV@header\XKV@tkey\endcsname{#1}\relaxl}y
594 \fi
595 X%
596 }

\XKVedefault This macro checks the \prefix@fam@key@default macro. If the macro has the
form as defined by keyval or xkeyval, it is possible to extract the default value and
safe that (if requested) and replace pointers. If the form is incorrect, just execute
the macro and forget about possible pointers. The reason for this check is that
certain packages (like fancyvrb) abuse the ‘default value system’ to execute code
instead of setting keys by redefining default value macros. These macros do not
actually contain a default value and trying to extract that would not work.

597 \def\XKV@default#1#2\@nil{%
Retrieve the name of the first token in the macro.
598 \expandafter\edef\expandafter\XKV@tempa\expandafter{\expandafter\Q@gobble\string#1}/

Construct the name that we expect on the basis of the keyval and xkeyval syntax
of default values.

599 \edef\XKV@tempb{\XKV@header\XKVQtkey}’%
Sanitize \XKV@tempb to reset catcodes for comparison with \XKV@tempa.

600 \@onelevel@sanitize\XKVQ@tempb
601 \ifx\XKV@tempa\XKV@tempb

40

\setrmkeys

\XKV@setrmkeys

If it is safe, extract the value. We temporarily redefine the key macro to save the
default value in a macro. Saving the default value itself directly to a macro when
defining keys would of course be easier, but a lot of packages rely on this system
created by keyval, so we have to support it here.

602 \begingroup

603 \expandafter\def\csname\XKV@header\XKV@tkey\endcsname##1{J,
604 \gdef\XKVQ@tempa{##1}J

605 /A

606 \csname\XKV@header\XKV@tkey @default\endcsname

607 \endgroup

Save the default value to a value macro if either the key name has been entered
in a \savekeys macro or the starred form has been used.

608 \XKV@ifundefined{XKV@\XKV@header save}{}{/

609 \expandafter\XKV@testsavekey\csname XKV@\XKV@header save\endcsname\XKVQtkey
610 Yh

611 \1fXKVerkv

612 \ifXKV@sg\expandafter\global\fi\expandafter\let

613 \csname XKV@\XKV@header\XKV@tkey @value\endcsname\XKV@tempa

614 \fi

Replace the pointers.

615 \expandafter\XKV@replacepointers\expandafter{\XKV@tempal}’

Add the key macro with the (possibly changed) default value to the execution
macro.

616 \XKV@addtomacro@o\XKV@exec{\expandafter#l\expandafter{\XKVQ@tempa}\relax}/,
617 \else

Add the default value macro without any features to the execution macro.

618 \expandafter\XKV@addtomacro@o\expandafter\XKV@exec\expandafter
619 {\csname\XKV@header\XKV@tkey @default\endcsname\relax}/,

620 \fi

621 }

Set remaining keys stored in \XKV@rm. The starred version creates a new list in
\XKV@rm in case there are still keys that cannot be located in the families specified.
Care is taken again not to expand fragile macros. Use \XKV@testopa again to
handle optional arguments.

622 \def\setrmkeys{\XKV@testopta\XKV@setrmkeys}

Submits the keys in \XKV@rm to \XKV@setkeys.

623 \def\XKV@setrmkeys [#1]{%

624 \def\XKV@tempa{\XKV@setkeys [#1]}/

625 \expandafter\XKV@tempa\expandafter{\XKVe@rm}%
626 }

Reset catcodes.

627 \XKVcatcodes
628 (/tex)

41

\XKV@warn
\XKV@err

12.2 ETEX program

Initialize the package.

629 %<xlatex>

630 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

631 \ProvidesPackage{xkeyval}[2005/01/30 v2.0 package option processing (HA)]

Initializations. Load xkeyval.tex, adjust some catcodes to define internal macros
and initialize the \DeclareOptionX* working macro.

632 \ifx\XKeyValLoaded\endinput\else\input xkeyval.tex \fi
633 \edef\XKVcatcodes{/

634 \catcode‘\noexpand\=\the\catcode ‘\=\relax

635 \catcode‘\noexpand\,\the\catcode‘\,\relax

636 \catcode‘\noexpand\:\the\catcode‘\:\relax

637 \let\noexpand\XKVcatcodes\relax

638 }

639 \catcode ‘\=12\relax

640 \catcode‘\,12\relax

641 \catcode ‘\:12\relax

642 \let\XKV@doxs\relax

Warning and error macros.

643 \def\XKV@warn#1{\PackageWarning{xkeyval}{#1}}
644 \def\XKV@err#1{\PackageError{xkeyval}{#1}\@ehc}

At loading, retrieve document class, copy \@classoptionslist to \XKV@classoptionslist
and filter key=value pairs from the original.

645 \ifx\XKV@documentclass\Qundefined

Retrieve the document class from \@filelist. This is the first filename in the list

with a class extension. Use a while loop to scan the list and stop when we found

the first filename which is a class. Also stop in case the list is scanned fully.

646 \XKV@whilist\XKV@tempa:=\@filelist\do\ifx\XKV@documentclass\@undefined\fi{}

647 \filename@parse\XKV@tempa

648 \ifx\filename@ext\@clsextension

649 \edef\XKV@documentclass{\filename@base.\filename@extl}Y,
650 \fi

651 1}

652 \ifx\XKV@documentclass\@undefined

653 \XKV@err{xkeyval loaded before \protect\documentclass}/,
654 \let\XKV@documentclass\@empty

655 \let\XKV@classoptionslist\@empty

656 \else

657 \let\XKV@classoptionslist\@classoptionslist

Code to filter key=value pairs from \@classoptionslist without expanding op-
tions.

658 \def\XKV@tempa#1{/

659 \let\@classoptionslist\@empty
660 \XKV@tempb#1,\@nil,%

661 }

662 \def \XKVQ@tempb#1,{/,

663 \def\XKV@tempa{#1}/,

664 \1fx\XKV@tempa\@nnil\else

665 \in@{=}{#1}/,

42

666 \ifin@\else\XKVQ@addtolist@n\@classoptionslist{#1}\fi

667 \expandafter\XKVQtempb

668 \fi

669 }

670 \expandafter\XKV@tempa\expandafter{\@classoptionslist}
671 \fi

672 \fi

\XKV@testoptc Macros for \ExecuteOptionsX and \ProcessOptionsX for testing for optional
\XKVet@stoptc arguments and inserting default values.
\XKV@t@st@ptc 673 \def\XKV@testoptc#i{}
\XKVe@et@st@ptc 674 \XKV@ifstar{\XKV@sttrue\XKV@tOstoptc#1}{\XKV@stfalse\XKV@t@stoptc#1}},
675 }
676 \def \XKV@t@stoptc#1{\@testopt{\XKVOt@st@ptc#1}{KV}}
677 \def\XKVet@st@ptc#1 [#2] {/
678 \XKV@makepf{#21}/,
679 \Q@ifnextchar<{\XKV@Qt@st@ptc#1}{\XKV@Qt@st@ptc#1<\Qcurrname.\Qcurrext>}}
680 }
681 \def\XKVOQtQ@st@ptc#1<#2>{Y,
682 \XKV@sp@deflist\XKVQfams{#2}/,
683 \@testopt#1{}/,
684 }

Macros for class and package writers. These are mainly shortcuts to \define@key
and \setkeys. The BTEX macro \@fileswith@pti@ns is set to generate an error.
This is the case when a class or package is loaded in between \DeclareOptionX
and \ProcessOptionsX commands.

\DeclareOptionX Declare an option.

685 \def\DeclareOptionX{%

686 \let\@fileswith@pti@ns\@badrequireerror
687 \XKV@ifstar\XKV@dox\XKV@d@x

688 }

\XKVedox This macro defines \XKV@doxs to be used for unknown options.
689 \long\def\XKV@dox#1{\XKV@toks{#1}\edef\XKV@doxs{\the\XKVQ@toks}}

\Xkvedex Insert default prefix and family name (which is the filename of the class or package)
\Xkveedex and add empty default value if none present. Execute \define@key.
\XKV@0@dex 690 \def\XKVedex{\@testopt\XKVe@d@x{KV}}
691 \def\XKV@@dex [#1]{\@ifnextchar<{\XKV@e@dex [#1] }{\XKVeeadex [#1]<\@currname.\@currext>}}
692 \def\XKVoeedox [#1]<#2>#3{\C@testopt{\defineQkey [#1]{#2}{#3}}{}}

\ExecuteOptionsX This macro sets keys to specified values and uses \XKV@setkeys to do the job.
Insert default prefix and family name if none provided. Use \XKV@t@stoptc
to handle optional arguments and reset \ifXKV@st and \ifXKV@pl first to
avoid unexpected behavior when \setkeys#*+ (or a friend) has been used before
\ExecuteOptionsX.

693 \def\ExecuteOptionsX{\XKV@stfalse\XKV@plfalse\XKVQt@stoptc\XKV@setkeys}

\ProcessOptionsX Processes class or package using xkeyval. The starred version copies class options
submitted by the user as well, given that they are defined in the local families which
are passed to the macro. Use \XKV@testoptc to handle optional arguments.

694 \def\ProcessOptionsX{\XKV@stfalse\XKV@plfalse\XKV@testoptc\XKV@pox}

43

\XKV@pox

Workhorse for \ProcessOptionsX and \ProcessOptionsXx.

695 \def \XKV@pox [#1]{%
696 \let\XKV@tempa\Qempty

Set \XKV@inpox: indicates that we are in \ProcessOptionsX to invoke a special
routine in \XKV@s@tkeys.

697 \XKV@inpoxtrue
Set \@fileswith@pti@ns again in case no \DeclareOptionX has been used. This
will be used to identify a call to \setkeys from \ProcessOptionsX.

698 \let\@fileswith@pti@ns\@badrequireerror
699 \edef\XKV@testclass{\@currname.\@currextl}y

If xkeyval is loaded by the document class, initialize \@unusedoptionlist.
700 \ifx\XKV@testclass\XKV@documentclass

701 \let\Qunusedoptionlist\XKV@classoptionslist
702 \XKV@ifundefined{ver@xkvltxp.sty}{}{/

703 \@onelevel@sanitize\@unusedoptionlist

704 Y

705 \else

Else, if the starred version is used, copy global options in case they are defined
in local families. Do not execute this in the document class to avoid setting keys
twice.

706 \ifXKVest

707 \def\XKV@tempb##1, {}

708 \def\CurrentOption{##11}/,

709 \ifx\CurrentOption\@nnil\else

710 \XKV@gQ@tkeyname##1=\0nil\CurrentOption
711 \XKV@key@if@ndefined{\CurrentOption}{}{%

If the option also exists in local families, add it to the list for later use and remove
it from \@unusedoptionlist.

712 \XKV@useoption{##11}J,

713 \XKV@addtolist@n\XKV@tempa{##1}

714 Yh

715 \expandafter\XKV@tempb

716 \fi

717 Y

718 \expandafter\XKV@tempb\XKV@classoptionslist,\@nil,%
719 \fi

720 \fi

Add current package options to the list.

721 \expandafter\XKV@addtolist@o\expandafter

722 \XKV@tempa\csname opt@\@currname.\@currext\endcsname

Set options. We can be certain that global options can be set since the definitions
of local options have been checked above. Note that \DeclareOptionX* will not
consume global options when \ProcessOptionsX* is used.

723 \def\XKV@tempb{\XKV@setkeys [#1]1}/

724 \expandafter\XKV@tempb\expandafter{\XKV@tempaly,

Reset the macro created by \DeclareOptionX* to avoid processing future un-
known keys using \XKV@doxs.

725 \let\XKV@doxs\relax

44

Reset the \XKV@rm macro to avoid processing remaining options with \setrmkeys.
726 \1let\XKV@rm\Qempty

Reset \ifXKV@inpox: not in \ProcessOptionsX anymore.

727 \XKV@inpoxfalse

Reset \@fileswith@pti@ns to allow loading of classes or packages again.

728 \let\@fileswith@pti@ns\@@fileswith@pti@ns
729 \AtEndOfPackage{\let\Qunprocessedoptions\relaxl}/,
730 }

\XKVe@useoption Removes an option from \@unusedoptionlist.

731 \def\XKV@useoption#1{J
732 \def\XKV@resa{#1}/,
733 \XKV@ifundefined{ver@xkvltxp.sty}{}{%

734 \@onelevel@sanitize\XKV@resa

735 Yh

736 \@expandtwoargs\@removeelement{\XKV@resa}{\@Qunusedoptionlist}\@unusedoptionlist
737 }

The options section. Postponed to the end to allow for using xkeyval options
macros. All options are silently ignored.

738 \DeclareOptionX*{\PackageWarning{xkeyval}{Unknown option ‘\CurrentOption’}}
739 \ProcessOptionsX

Reset catcodes.

740 \XKVcatcodes
741 (/latex)

12.3 ETEX kernel patch

This section redefines some kernel macros as to avoid expansions of options
at several places to allow for macros in key values in class and package op-
tions. It uses a temporary token register and some careful expansions. No-
tice that \@unusedoptionlist is sanitized after creation by xkeyval to avoid
\@removeelement causing problems with macros and braces. See for more in-
formation about the original versions of the macros below the kernel source doc-
umentation [2].

742 <*1ltxpatch>

743 hh

744 %), Based on latex.ltx.

745 W

746 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

747 \ProvidesPackage{xkvltxp}[2004/12/13 v1.2 LaTeX2e kernel patch (HA)]
748 \def \@pass@ptions#1#2#3{%

749 \def\reserved@a{#21}}

750 \def\reserved@b{\CurrentOption}/

751 \ifx\reserved@a\reserved@b

752 \@ifundefined{opt@#3.#1}{\@temptokena\expandafter{#2}}{%

753 \@temptokena\expandafter\expandafter\expandafter{\csname opt@#3.#1\endcsnamel/,
754 \@temptokena\expandafter\expandafter\expandafter{/

755 \expandafter\the\expandafter\Q@temptokena\expandafter,#21}7

756 Yh

757 \else

45

758 \@ifundefined{opt@#3.#1}{\@temptokena{#2}}{/

759 \@temptokena\expandafter\expandafter\expandafter{\csname opt@#3.#1\endcsnamel},
760 \@temptokena\expandafter{\the\Q@temptokena, #2}%

761 Yh

762 \fi

763 \expandafter\xdef\csname opt@#3.#1\endcsname{\the\@temptokenal}’
764 }

765 \def\OptionNotUsed{’,

766 \ifx\@currext\@clsextension

767 \let\reserved@a\CurrentOption

768 \@onelevel@sanitize\reserved®a

769 \xdef\@unusedoptionlist{%

770 \ifx\Qunusedoptionlist\@empty\else\@unusedoptionlist,\fi
771 \reserved@al

772 \fi

773 }

774 \def\Quse@ption{y

775 \let\reserved®@a\CurrentOption

776 \Q@onelevel@sanitize\reserved®@a

777 \Q@expandtwoargs\@removeelement\reserved@a
778 \@unusedoptionlist\@unusedoptionlist

779 \csname ds@\CurrentOption\endcsname

780 }

781 \def\@fileswith@pti@ns#1 [#2]#3 [#4]{}

782 \ifx#1\Qclsextension

783 \ifx\@classoptionslist\relax

784 \@temptokena{#2}/,

785 \xdef\@classoptionslist{\the\@temptokenaly,
786 \def\reserved@a{’,

787 \@onefilewithoptions#3[#2] [#4]#17,

788 \@documentclasshookl}

789 \else

790 \def\reserved@a{’,

791 \Qonefilewithoptions#3[#2] [#4]1#11}7,

792 \fi

793 \else

794 \@temptokena{#2}/,

795 \def\reserved@b##1,{/

796 \ifx\@nil##1\relax\else

797 \ifx\relax##1\relax\else

798 \noexpand\Q@onefilewithoptions##1[\the\Q@temptokena] [#4] \noexpand\@pkgextension
799 \fi

800 \expandafter\reserved@b

801 \£i}V

802 \edef\reserved@a{\zap@space#3 \Qemptyl}’
803 \edef\reserved@a{\expandafter\reserved@b\reserved@a,\@nil, }},
804 \fi

805 \reserved@a}
806 \let\@@fileswith@pti@ns\@fileswith@ptilns
807 {/Itxpatch)

46

12.4 keyval primitives

Since the xkeyval macros handle input in a very different way than keyval macros, it
is not wise to redefine keyval primitives (like \KV@do and \KV@split) used by other
packages as a back door into \setkeys. Instead, we load the original primitives
here for compatibility to existing packages using (parts of) keyval. Most of the
code is original, but slightly adapted to xkeyval. See the keyval documentation for
information about the macros below.

808 %<xkeyval>

809 %%

810 %% Based on keyval.sty.

811 %

812 \def\XKV@tempa#1{/,

813 \def\KVQ@sp@def##1##2{}

814 \futurelet\XKV@resa\KV@Qsp@d##2\@nil\@nil#1\@nil\relax##1}/,

815 \def\KV@@sp@d{’,

816 \ifx\XKV@resa\@sptoken

817 \expandafter\KV@0sp@b

818 \else

819 \expandafter\KV@@sp@b\expandafter#1y,
820 \fil}%

821 \def\KV@@sp@b#1##1 \@nil{\KV@@spQc##1}}
822 1}

823 \XKV@tempa{ }

824 \def\KV@OspOc#1\@nil#2\relax#3{\XKV@toks{#1}\edef#3{\the\XKV@toksl}}
825 \def\KV@do#1,{%

826 \ifx\relax#1\Q@empty\else

827 \KV@split#l==\relax

828 \expandafter\KV@do\fi}

829 \def\KV@split#1=#2=#3\relax{/

830 \KV@@sp@def\XKV@tempa{#11}/

831 \ifx\XKV@tempa\@empty\else

832 \expandafter\let\expandafter\XKV@tempc
833 \csname\KV@prefix\XKV@tempa\endcsname
834 \ifx\XKV@tempc\relax

835 \XKV@err{ ‘\XKV@tempa’ undefined},

836 \else

837 \ifx\@empty#3\Qempty

838 \KV@default

839 \else

840 \KV@@sp@def \XKV@tempb{#2}/,

841 \expandafter\XKV@tempc\expandafter{\XKVQ@tempb}\relax
842 \fi

843 \fi

844 \fi}

845 \def \KVe@default{’
846 \expandafter\let\expandafter\XKV@tempb

847 \csname\KV@prefix\XKV@tempa Q@default\endcsname

848 \ifx\XKV@tempb\relax

849 \XKV@err{No value specified for key ‘\XKV@tempa’}%
850 \else

851 \XKV@tempb\relax

852 \fi}

853 (/keyval)

47

12.5 TEX header

This section generates xkvtxhdr.tex which contains some standard I TEX macros

taken from latex.ltx. This will only be loaded when not using xkeyval.sty.

854 %<*header>

855 %h

856 %/ Taken from latex.ltx.

857 %

858 \message{2005/01/02 v1.0 xkeyval TeX header (HA)}
859 \def\@nnil{\Onil}

860 \def\@empty{}

861 \def\newif#1{%

862 \count@\escapechar \escapechar\m@ne

863 \let#1\iffalse
864 \@if#1\iftrue
865 \@if#1\iffalse

866 \escapechar\count@}

867 \def\@if#1#2{J,

868 \expandafter\def\csname\expandafter\@gobbletwo\string#17
869 \expandafter\Qgobbletwo\string#2\endcsname
870 {\let#1#2}}

871 \long\def\@ifnextchar#1#2#3{%

872 \let\reserved@d=#1Y,

873 \def\reserved@a{#2}}

874 \def\reserved@b{#3}%

875 \futurelet\@let@token\@ifnch}

876 \def\@ifnch{¥%

877 \ifx\@let@token\@sptoken

878 \let\reserved@c\@xifnch

879 \else

880 \ifx\@let@token\reserved@d
881 \let\reserved@c\reserved@a
882 \else

883 \let\reserved@c\reserved@b
884 \fi

885 \fi

886 \reserved@c}

887 \def\:{\let\@sptoken= } \: % this makes \@sptoken a space token
888 \def\:{\@xifnch} \expandafter\def\: {\futurelet\@let@token\@ifnch}
889 \let\kernel@ifnextchar\@ifnextchar

890 \long\def\@testopt#1#2{%

891 \kernel@ifnextchar [{#1}{#1[{#2}]1}}

892 \def\@fornoop#1\Qe#2#3{}

893 \long\def\@for#1:=#2\do#3{%

894 \expandafter\def\expandafter\@fortmp\expandafter{#23}/,

895 \ifx\@fortmp\Q@empty \else

896 \expandafter\@forloop#2,\@nil, \@nil\@C#1{#3}\fi}

897 \long\def\@forloop#1,#2, #3\00#4#5{\def#4{#1}\ifx #4\@nnil \else

898 #5\def#4{#2}\ifx #4\0nnil \else#5\Q@iforloop #3\QO#4{#5}\fi\fi}
899 \long\def\@iforloop#1, #2\00#3#4{\def#3{#1}\ifx #3\0nnil

900 \expandafter\@fornoop \else

901 #4\relax\expandafter\Q@iforloop\fi#2\Qo#3{#41}}

902 \long\def \@gobble #1{}
903 \long\def \@gobbletwo #1#2{}

48

904 \def\@expandtwoargs#1#2#3{J,

905 \edef\reserved@a{\noexpand#1{#2}{#3}}\reserved@a}t
906 \edef\@backslashchar{\expandafter\@gobble\string\\}
907 \newif\ifin®@

908 \def\in@#1#2{%

909 \def\inQ@##1#1##2##3\in0e{Y

910 \ifx\in@##2\in@false\else\in@true\fi}/,

911 \in@@#2#1\in@\in0A@}

912 \def\zap@space#1 #2{/,

913 #1,

914 \ifx#2\Qempty\else\expandafter\zap@space\fi
915 #2}

916 \def\strip@prefix#1>{}
917 \def \@onelevel@sanitize #1{%

918
919

920 }

\edef #1{\expandafter\strip@prefix
\meaning #1}%

921 (/header)

References

[1]

Hendri Adriaens. pst-xkey package, v1.3, 2005/01/16. CTAN:/macros/latex/
contrib/xkeyval.

[2] Johannes Braams, David Carlisle, Alan Jeffrey, Leslie Lamport, Frank Mit-
telbach, Chris Rowley, and Rainer Schopf. The KTEX 2 sources. CTAN:
/macros/latex/base, 2003.

[3] David Carlisle. keyval package, v1.13, 1999/03/16. CTAN:/macros/latex/
required/graphics.

[4] Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, and
Chris Rowley. The BTgX Companion, Second Edition. Addison-Wesley, 2004.

[5] Herbert VoB. PSTricks website. http://www.pstricks.de.

[6] Timothy Van Zandt et al. PSTricks package, v1.04, 2004/06/22. CTAN:
/graphics/pstricks.

Acknowledgements

The author is grateful to Josselin Noirel, Till Tantau, Herbert Vol and Carsten
Heinz for help and suggestions. Thanks go to Donald Arseneau for contributing
the \@ifnextcharacter macro. Special thanks go to Uwe Kern for his ideas
for improving the functionality of this package, a lot of useful comments on the
package and the documentation and for contributing the \@selective@sanitize
macro.

49

Version history

v1.0 (2004/04/29)
General: Initial release 1
vl.1l (2004,/04/30)

\XKV@@e@d@x: Made to insert an
empty default value if none
present for \DeclareOptionX 43

vl.2 (2004,/05/08)

General: Change to \DeclareOptionXf;

macro is now replaced 1
v1l.3 (2004,/05/09)

General: Moved the options sec-
tion to the end of the package
to allow it to use xkeyval option

MACTOS .« vttt 45
Revision of documentation ... 1
vl.4 (2004,/08/24)
\@ifnextcharacter: Added ro-
bust next character check 23
General: Added keyval primitives 47
Added + option to macros 7
Added pointer syntax 8
Added prefix options to macros
................... 3,6, 15
Changed package options . 20
Fixed small bug in class option
filtering 42

Made package TEX compatible 1

Renamed macros to keyval
NAMES . .t 1
\define@key: Added optional
check 32
\ProcessOptionsX: Fixed macro
for \LoadClass case 43
\XKV@split: Made macro more ef-
ficient 38
vl.5 (2004/09/27)
General: Added ITEX kernel
patch 45
Added pst-xkey 1
Added boolean keys 4
Added preset system 11
Corrected some minor bugs .. 1
Made macros avoid expansions
ofoptions 42
Removed \ifrecordkeyvals .. 8
Revised documentation 1
\XKV@for: Added 24
\XKV@whilist: Changed behavior 24
v1.6 (2004/10/05)
General: Changed loading preven-
tions oL 1

50

Corrected typos

\XKVewh@list: Added missing % 24

v1.7 (2004/11/25)
General: Added \disable@keys 5
Added command keys 5
Added system to control the
scope of definitions to various
MACTOS v v e e e e e 1
Changed ETEX patch from .tex
to.sty ... L 1
Changed name of \XKV@ifku 5
Changed pointer mechanism .. 8
Changed value saving mecha-
NS . . oo 8
Improved coding 1

Package uses e-TEX if available 1
Removed optional key checking
from define macros
Updated license information .. 1
\gpresetkeys: Made incremental 34
\XKV@makepf: Made macro protect
internal macros
v1.8 (2004/12/13)
\@s@l@ctive@sanitize: Bug
fixed, added level control . . .
General: Fixed inconsistency of
treatment of spaces in key
and family names, all left un-

30

26

touched now 1
Made package robust for cat-
code changes of equality char-
acter 1
\XKV@addtolist@n: Changed to
respect groups 25
\XKV@merge: Simplified 28
v1.8a (2004/12/20)
\XKV@setkeys: Solved small bug . 36
\XKV@sp@deflist: Modified to re-
spect the empty family 29

v1.8b (2004/12/22)
\XKV@ch@cksanitize: Fixed bug

for key value \@empty 27
v1.8¢c (2005/01/01)
General: Simplified and improved
some code 1
v1.8d (2005/01/02)
General: Renamed xkeyval.def to
xkvtxhdr.tex 1
Restructured package to indi-
cate general tools and their im-
plementation 1

\XKV@ifundefined: Simpli- \XKvV@et@st@ptc: Added extension
fied definition by using to default family 43
\XKV@afterelsefi 23 \XKV@wh@list: Made running

\XKV@r@placepointers: Added command contain last used list
\XKV@afterfi to avoid capac- entryatexit 24
ity problems when many point- v2.0 (2005/01/30)
ers present 39 General: Made \setkeys nestable 1

v1.9 (2005/01/16) \XKV@addtolist@n:Spnpﬁﬁed . 25

General: Added \delpresetkeys 1 \XKV@addtollst@o:Sgnphﬁed RE 25

\XKV@default: Repaired adding
Added \delsavekeys 1 .
extra braces when executing
Updated license information .. 1 default value 40

\XKV@@edex: Added extension to de- \XKV@ifundefined: Made none e-
fault family 43 TEX version not leave \relax 23

\XKV@r@placepointers: Added \XKV@r@placepointers: Simpli-
back linking test 39 fied 39

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\@@fileswith@ptilns
728, 806
28

\@addtofilelist
\@badrequireerror
686, 698
\@classoptionslist .
657, 659,
666, 670, 783, 785
\@clsextension .
. 488, 648, 766, 782
\@currext . 488, 679,
691, 699, 722, 766
\@currname
. 679, 691, 699, 722
\@documentclasshook 788
\@filelist 646
\@fileswith@pti@ns .
686,
698, 728, 781, 806
\@firstoftwo
. 30, 38, 48, 63,
219, 220, 278, 353
\@ifncharacter 56
\@ifnextcharacter
56, 219, 220
\@onefilewithoptions
787, 791, 798
\@onelevel@sanitize
112,

173, 600, 703,

734, 768, 776, 917
\@pass@ptions
\@pkgextension . 798
\@removeelement 736, 777
\@s@l@ctive@sanitize

\@secondoftwo 30
40, 46, 65, 276, 355

\@selective@sanitize
107, 165, 169

\@Qunknownoptionerror

\Qunusedoptionlist .
701, 703,
736, 769, 770, T78
\Q@use@ption 774
C
\CurrentOption
489, 492,
708-711, 738,
750, 767, T75, 779

D
\DeclareOptionX

51

..... 15, 685, 738
\DeclareOptionX* 16
\define@boolkey . 4, 303
\define@cmdkey .. 5, 329
\define@key . 3, 293, 692
\delpresetkeys 12, 390
\delsavekeys 9, 426
\disable@keys . 5, 358
\documentclass . 653

E
\ExecuteOptionsX 16, 693
F
\filename@base . 649
\filename®@ext 648, 649
\filename@parse . 647
G
\gdelpresetkeys 12, 390
\gdelsavekeys ... 9, 426
\global 9
\gpresetkeys ... 11,375
\gsavekeys 8, 415
\gsavevalue 8, 286
\gunpresetkeys 12, 403
\gunsavekeys 9,435
I

\ifXKV@inpox 21, 486, 502

\1fXKV@knf 19
348, 352, 485, 536
\ifXKVepl 18, 200, 530

\ifXKVerkv
20, 525, 545, 611
\ifXKV@sg 17, 526, 612

\ifXKvest 16, 202, 213,
384, 409, 411,
420, 441, 495, 706

K
\key@ifundefined 5, 339
\KV@@sp@b . 817, 819, 821
\KV@@sp@c 821, 824
\KV@@sp@d 814, 815
\KV@@sp@def

225, 234, 246,

270, 347, 511,
521, 813, 830, 840
\KV@default ... 838, 845
\KV@do 825, 828
\KV@err 215
\KV@errx 215
\KV@prefix 833, 847
\KV@split 827, 829

(0]
\OptionNotUsed . 765

P
\PackageError 644
\PackageWarning 643, 738
\presetkeys 11,375
\ProcessOptionsX

..... 16, 694, 739
\ProcessOptionsX* . 16

S
\savekeys 8, 415
\savevalue 8, 285
\setkeys 6, 445
\setkeys* 6
\setkeys*x+ 7
\setkeys+ 7
\setrmkeys 7, 622
\setrmkeys* 7
\setrmkeys*+ 7
\setrmkeys+ 7

U
\unpresetkeys 12, 403
\unsavekeys 9, 435
\usevalue 562, 564

X
\XKeyValLoaded .. 3, 632
\XKV@eedex
\XKVeedex
\XKVeQifcmd
\XKVeet@st@pta
\XKVeet@st@ptc 673
\XKV@addtolist@n

92, 496, 666, 713
\XKV@addtolist@o
..... 99, 195,
197, 200, 211, 721
\XKV@addtolist@x
106, 451, 575
\XKV@addtomacro@n

87, 94, 96, 565

\XKV@addtomacro@o

..... 88, 101,

103, 593, 616, 618
\XKV@afterelsefi

...... 32, 34, 572
\XKVe@afterfi 32, 566, 574
\XKV@ch@cksanitize .

. 163, 164, 168, 171
\XKV@checksanitizea

. 162, 185, 383, 455
\XKV@checksanitizeb
167,

205, 262, 360, 419
\XKV@classoptionslist
14,

655, 657, 701, 718
\XKV@d@f ine@boolkey

........ 308, 310
\XKV@d@fine@cmdkey .
333, 335
\XKvVedefine@kQy 295, 298
\XKV@d@lpresetkeys

393, 394, 396

\XKVedex 687, 690
\XKV@default .. 589, 597
\XKV@def ine@boolkey

........ 303, 304
\XKV@define@cmdkey .
329, 330

\XKV@def ineQkey
. 293, 294, 367, 369
\XKV@delete 204, 400, 432
\XKV@delpresetkeys
390, 391, 392
\XKV@delsavekeys
426, 427, 428
\XKV@disable@keys
358, 359

\XKV@documentclass .
14,
645, 646,
652, 654, 700
687, 689
487,
642, 689, 725
&7
363,
430,
498, 515,
573, 587,
653, 835, 849
459,
593, 616, 618
262, 263,
348, 466,

498, 531, 536, 682
\XKVefor 86, 466, 531
\XKV@g@tkeyname .

. 283, 450, 510, 710
\XKV@getkeyname .
283, 387, 400
\XKVegetsg 290, 423, 432
\XKV@ifcmd 273,

285, 286, 291, 547
\XKVe@ifplus ... 219, 257
\XKV@ifstar

. 219, 254, 674, 687
\XKV@ifundefined

. 34, 52, 350,

362, 366, 382,

397, 406, 418,

429, 438, 468

522, 567, 583,

586, 608, 702, 733
\XKV@key@if@ndefined

343, 345, 711
\XKV@key@ifundefined
339, 340

502,
649,
\XKV@dox
\XKV@doxs
492,
\XKVQ@err
237,
398,
439,
568,
@7
\XKV@exec
463,
\XKV@fams
342,

407,

\XKV@kn 477, 519
\XKV@kna .. 451, 456, 472
\XKV@makehd 245, 269,
349, 467, 532, 537
\XKV@makepf ... 233
261, 268, 341, 678
\XKV@merge 184, 387, 423
\XKV@pox 694, 695
\XKV@pr@setkeys
378, 379, 381

\XKV@prefix
234, 236, 238,
240, 241, 248, 250

\XKV@presetkeys
375, 376, 377
\XKV@r@placepointers
\XKV@replacepointers
529, 559, 615
\XKV@rm 22,
458, 496, 625, 726
\XKV@s@tk@ys .. 478, 480
\XKV@s@tkeys
461, 471, 476
\XKV@savekeys
415, 416, 417
\XKV@setbool .. 307, 314
\XKV@setkey@infam
533, 538, 582
\XKV@setkeys .. 445,
446, 624, 693, 723

\XKV@setrmkeys 622, 623
\XKV@sp@deflist 221,
263, 342, 477, 682
\XKV@split 484, 509
\XKvVet@st@pta 253
\XKVet@st@ptc 673
\XKVet@stopta 253
\XKVet@stoptb 266
\XKVet@stoptc 673, 693
\XKV@testclass
502, 699, 700
\XKV@testopta
253, 445, 622
\XKV@testoptb . 266

293, 303, 329,
358, 375, 376,
390, 391, 403,

53

404, 415, 416,
426, 427, 435
\XKV@testoptc 673
\XKV@testsavekey
523, 544,
\XKV@unpresetkeys
403, 404,
\XKV@unsavekeys
435, 436,
\XKV@useoption .
503, 712,
\XKV@usepresetkeys
460, 462,
\XKV@warn . 215, 365,
\XKVewh@lest . 75, 80
\XKV@wh@list 70
\XKV@whilist
69, 348, 536,

436
694

609
405
437
731
465
643
, 85
, 12

646

