CLAUDIO BECCARI

claudio dot beccari at gmail dot com

THE euclideangeometry PACKAGE

USER MANUAL

Version 0.2.2 of 2023-07-11

Abstract

The euclideangeometry package further extends the functionalities of the
curve2e package, which, on turn, is an extension of the pict2e package for
the standard picture environment as defined in the IATEX kernel source file.

The curve2e package was upgraded in 2020 and again in 2023; some
material of this package, might have been included in the former pict2e one,
but it is so specific, that we preferred defining a standalone one; this package
takes care of requesting the packages it depends from.

The purpose is to provide the tools to draw most of the geometrical
constructions that a high school teacher or bachelor degree professor might
need in order to teach (plane) geometry. The connection to Euclide depends
on the fact that in its times calculations were made with ruler, compass, and,
apparently, also with the ellipsograph.

The user of this package has available all the machinery provided by the
pict2e and curve2e packages, in order to define new functionalities and build
macros that draw the necessary lines, circles, and other such objects, as they
would have done in the old times. Actually just one macro is defined in this
package to solve a linear system of equations

Contents

1 Introduction 1
2 Installing euclideangeometry 3
3 Loading euclideangeometry 3
4 Available commands 4
5 curve2e extensions 6
6 Euclidean geometry commands 12
7 Examples 23
7.1 Straight and curved vectors 23
7.2 Polygons. 24
7.3 Dashed and dotted lines 24
7.4 Generic Curves v e 24
7.5 The \multiput command 24
7.6 Drawing mathematical functions 25
7.7 Intersections involving circles 28
7.8 Triangles and their special lines 33
7.9 Special triangle centers 33
7.10 Triangles and ellipses, 37
7.10.1 The Steiner ellipse 37
7.10.2 The tangent to an ellipse 37
7.10.3 A triangle internally tangent ellipse given one of its foci 40
7.11 A simple proof of Pythagoras’ theorem 41
8 Conclusion 44
Warning

The euclideangeometry package requires the advanced functionalities of the
ITEX 3 (L3) language; if such functionalities are not available for any reason
(incomplete/basic installation of the TEX system; legacy installation of the
TEX system; the TEX system has not been updated; ...) input of this
package is stopped, the whole job is aborted, and a visible message is issued.

1 Introduction

The picture environment has been available since the very beginning of K TEX
in 1985. At that time it was really a simple environment that allowed to

draw very simple line graphics with many limitations. When KTEX was
upgraded from KTEX 2.09 to KTEX 2 in 1994, Leslie Lamport announced
an upgrade that eventually became available in 2003 with package pict2e; in
2006 I wrote the first version of the curve2e package that added many more
functionalities; both packages were upgraded during these years; and now
line graphics with the picture environment can perform pretty well. The
package euclideangeometry adds even more specific functionalities in order
to produce geometric drawings as they were possible in the old times, when
calculus and analytic geometry were not available.

In these years other drawing programs were made available to the TEX
community; PSTricks and TikZ are the most known ones, but there are other
less known packages, that perform very well; among the latter I would like
to mention xpicture, that relies on pict2e and curve2e, but extends the func-
tionalities with a very smart handling of coordinate systems, that allow to
draw many line drawings suitable for teaching geometry in high schools and
introductory courses in the university bachelor degree programs. It is worth
mentioning that an extension of TikZ, called tkz-euclide, is also available in a
complete and updated TEX system installation; at the moment its documen-
tation needs some refinements, at least to consistently use a single language,
without switching from English to French and viceversa. It aims at the
same readership, but it allows to do many more geometrical constructions,
than euclideangeometry. The real difference is that euclideangemetry may be
easily expanded without the need of knowing the complex machinery and
coding of the tkz-euclide underlaying TikZ package.

This package euclideangeomery apparently follows the same path of xpic-
ture, but it avoids defining a new user language interface; rather it builds
new macros by using the same philosophy of the recent curve2e package.

It is worth mentioning that now curve2e accepts coordinates in both
cartesian and polar form; it allows to identify specific points of the drawing
with macros, so the same macro can be used over and over again to address
the same point. The package can draw lines, vectors, arcs with no arrow tips,
or with one arrow tip, or with arrow tips at both ends, arcs included. The
macros for drawing polylines, polygons, circles, generic curves (by means of
Bézier cubic or quadratic splines) are already available; such facilities are
documented and exemplified in the user manual of the curve2e package.

In what follows there will be several figures drawn with this package;
in the background there is a red grid where the meshes are 10 \unitlenth
apart in both directions; they should help to understand the position of the
various drawings on the picture canvas. This grid is useful also to the end
user, while s/he is working on a particular drawing, but when the drawing
is finished, the user can delete the grid command or comment out that line
of code. For what regards the commands used to render the images, their
codes can be found in the documented code file euclideangeometry.pdf.

2 Installing euclideangeometry

You are not supposed to manually install package euclideangeometry. In
facts you have to work with a complete and updated/upgraded TEX instal-
lation, otherwise this package won’t work; this means that you have done
your updating after 2020-01-18. And this package is already present in any
modern updated complete installation of the TEX system. If curve2e has
a date earlier then 2020-01-018, the curve2e itself will load curve2evl16l, an
older version, and this package euclideangeomentry will abort its own load-
ing, besides aborting the whole job.

We remember the package dependencies; the primary dependence is
package curve2e with a version date more recent or equal to 2020-01-18.
On turn curve2e requires packages xparse and xfp'; missing these two pack-
age, it loads its own previous version, that does not use such packages, but
their absence forbids it working, so that, after a very visible error message,
it directly aborts. It also depends on etoolbox. The chain of dependencies of
the above first level packages may be controlled directly on those packages
documentation

3 Loading euclideangeometry

If you want to use the euclideangeometry package, we suggest you load it
with the following command:

\usepackage [(options)]{euclideangeomery}

The package will take care of managing the possible (options) and to call
curve2e with such specified options; on turn curve2e calls pict2e passing on
the (options); such (options) are only those usable by pict2e because neither
curve2e nor euclideangeometry use any option. If the user is invoking eu-
clideangeometry, it is certain s/he does not want to use the modern extended
picture environment, not the native one; therefore the only meaningful pos-
sible options are latex and pstricks; such options influence only the shape
of the arrow tips; with option latex they are triangular, while with pstricks
they have the shape of a stealth aircraft. The difference is very small; there-
fore we imagine that even if these options are available, they might never
be used.

Nothing happens if the user forgets this mechanism; therefore if s/he
loads curve2e and/or pict2e, before euclideangeomentry the only problem
that might arise is an “Option clash” error message; if two of these packages
are selected with different arrow tips; not impossible, of course, by we deem
it very unlikely.

Most functionalities of xfp are already included into the I¥TEX 2. kernel, but this
package uses also some functionalities that have not made their way to the kernel.

4 Available commands

The commands available with the first extension pict2e to the native picture
environment, maintain their names but do not maintain the same restric-
tions; in particular there are the following improvements.

1.

Lines and vectors are drawn as usual by \putting in place their forms,
but their inclinations are not limited to a small set of slope parameters,
originally specified with reciprocally prime single digit values not ex-
ceeding 6 for lines, and 4 for vectors; the length of these sloped objects
is still their horizontal component; now, the slopes may be described
with any signed fractional number not exceeding 23° — 1 in absolute
value; it still is a limited number of slopes, but their combinations are
practically countless.

There is no restriction on the minimum length of lines and vectors.
Circles and dots can be drawn at any size, not at that dozen or so
finite sizes that were accepted with the original environment.

Ovals may be specified the corner curvature; the default size of the
quarter circles that make up the oval corners may be specified; if no
specification is given the radius of such corners is the maximum that
can fit into the oval; in practice it is half the shortest value between
the oval height and width.

The quadratic Bézier splines do not require the specification of the
number of dots that were used by the native environment to draw
“arbitrary” curves; now they are drawn with continuous curved lines.

Some new commands were added by pict2e

1.

The third degree (cubic) Bézier splines are sort of new; certainly now
they are traced with continuous lines; if it is desired, it is possible
to replace the continuous line with a number of dots so as to have a
(unevenly) dotted curve. It suffices to specify the number of dots the
curve should be made with.

. \arc and \arc* draw an arc or a filled circular sector, with their

centers at the axes origin; therefore they need to be put in place some-
where else by means of the usual \put command.

The new command \Line traces a segment from one given point to
another point; it is very convenient to specify the end points instead
of the slope the line must have to go from the starting to the ending
point. The command does not require the \put command to put the
segment in place; nevertheless it can be shifted somewhere else with
\put if it becomes necessary.

The new command \polyline draws a sequence of connected segments
that form a piecewise linear “curve”; the way segments are joined to
one another depend from the “join” specifiers that pict2e has intro-
duced; they will be described further on.

D.

\polygon and \polygon* produce closed paths as it would be possible
when using \polyline and specifying its last point coincident with its
first one of that curve. If the asterisk is used the closed path is filled
with the default color.

There were also the low level commands user interfaces to the various
drivers; these drivers really exist, but pict2e knows how to detect the correct
language of the necessary driver; the user is therefore allowed to pretend to
ignore the existence of such drivers, and s/he can simply use these low level
commands; their names are almost self explanatory.

1.
. \lineto traces a segment up to a specified point.

\moveto Sets the start of a line to an initial point.

\curveto traces a third degree Bézier spline up to the third specified
point, while using the other two ones as control points.?

. \circlearc traces a circumference arc from the last line point to a

specified destination; its center, its angle amplitude, its initial point
are among the specified arguments, but the reader should check on the
pict2e documentation for the details.

Warning! Notice that these commands produce just information to
trace lines, but by themselves they do not trace anything; in order to
actually trace the curve or do other operations with what has been
done after the user finished describing the line to be traced, the fol-
lowing low level commands must be used.

A \closepath is necessary if it is desired to join the last position to
the initial one. But if the last point specified coincides with the very
first one, a closed loop is effectively already completed.

If a \strokepath command is used the line is drawn.

If a \fillpath command is used, the line loop is filled with the current
color. Notice, if the described line is not a closed loop, this filling
command acts as if the line first and last points were joined by a
straight line.

While describing a line with the above low level commands, or with
the previous high level commands, lines and segments join and finish as
described hereafter; the following commands must be used before actually
tracing a specific line made up with several joined lines or curves. Notice
that their effect is just visible with lines as thin as 1 pt, and very visible with
thicker lines.

1.

\buttcap truncates each line with a sharp cut perpendicular to the
line axis exactly through the line end point (default).

2. \roundcap adds a semicircle to the very end of each line.
3. \squarecap adds a half square to the very end of each line.

2If these terms are unfamiliar, please, read the pict2e documentation.

4. \miterjoin joins two (generally straight) lines with a miter (or mitre)
joint; this means that the borders of the line are prolonged until they
meet; it is very nice when the junction angle is not far away from, or is
larger than 90°. Apparently for pict2e this type of joint is the default.

5. \roundjoin joins each (generally straight) line with an arc on the
external part of the bend; it is good in most circumstances.

6. \beveljoin joins two (generally straight) lines with a miter joint trun-
cated with a sharp cut perpendicular to the bisector of the lines axes;
with acute angles it is better than the miter joint, but when angles are
very small, even this joint is not adequate.

Notice that \buttcap is the default, but in general it might be better to
declare the \roundcap for the whole document.

We do not go further in the description of the new pict2e modified and
new commands; the reader unfamiliar with programmable drawing and the
pic2e extensions can consult that package documentation. Actually all com-
mands have been redefined or modified by curve2e in order to render them
at least compatible with both the cartesian and polar coordinates. In oder
to have a better understanding of these details, see figure 1°.

buttcap,\miterjoi \roundgap,\roundjoin \squarecap,\beveljoin

Figure 1: Different caps and joins

5 curve2e extensions

Again we do not enter into the details, because the user can read the new
user manual curve2e-manual.pdf simply by entering and executing the
texdoc curve2e-manual command into a terminal or command prompt
window; this new manual is available with version 2.2.0 (or higher) of curve2e

3The \polyline macro has the default join of type bevel; remember to specify a dif-
ferent join type if you want a different one.

and it contains the extensions and sample codes for (simple) sample draw-
ings; some examples are not so simple, but show the power of this package
upgrade.

The most important two changes are (a) the choice of different coordi-
nates for addressing points on the drawing canvas, and (b) the possibility of
using macros to identify specific points. As already mentioned, such changes
have been applied also to most, if not all* commands defined by pict2e.

curveZe defines a lot of operations the user can do with the point coor-
dinates; this is done by assuming they are complex numbers, or vectors, or
rotoamplification operators, and making with such entities a lot of actions
compatible with their “incarnation". For example multiplying a vector by
a rotoamplification operator, in spite the fact that internally they are both
represented by ordered pairs of (generally) fractional numbers, means simply
obtaining a new vector rotated and scaled with respect to the original one;
the point addressed by the first vector, becomes another point in a different
precise position.

Below you see several examples of usage of such commands; but here
space will be saved if a short list is made concerning these “complex number”
operations.

Remember the double nature of such complex numbers:

z=x+41iy =me?
therefore addition and subtraction are simply done with
21+ 29 =1 w9 +1(y1 = y2)
Multiplications and divisions are simply done with

z1z9 = (m1ma) ellP1te2)
Squares and square roots® are simply done with:
52 — 2 el2e

VZz = \/T;eigoﬂ

The complex conjugate of a complex number is shown with a superscript
asterisk:
if z=x +1iy then 2* =z — iy

41 assume I have upgraded all such commands; if not, please, send me a bug notice; I
will acknowledge your contribution.

5The square root of a complex number has two complex values; here we do not go into
the details on how curve2e choses which value. In practice, the curve2e macros that use
square roots, work mostly on scalars to find magnitudes that are always positive.

and from these simple formal rules many results can be obtained; and there-
fore several macros have been defined.

But let us summarise. Here is a short list with a minimum of expla-
nation of the commands functionalities introduced by curve2e. The user
notices that many commands rely on a delimited argument command syn-
tax; the first arguments can generally be introduced with point macros, as
well as numerical coordinates (no matter if cartesian or polar ones) while
the output(s) should always be in form of point macro(s). Parentheses for
delimiting the ordered pairs or the point macros are seldom required. On
the other side, the variety of multiple optional arguments, sometimes re-
quires the use of different delimiters, most often than not the signs < >, in
addition to the usual brackets. These syntax functionalities are available
with the xparse and xfp packages, that render the language L3 very useful
and effective.

Handling of complex numbers is done with the following commands. New
commands to draw special objects, are also described.

1. Cartesian and polar coordinates; they are distinguished by their sepa-
rator; cartesian coordinates are the usual comma separated pair (z,y);
polar coordinates are specified with a colon separated pair (¢:). In
general they are specified within parentheses, but some commands re-
quire them without any parenthesis. In what follows a generic math
symbol, such as for example Py, is used to indicate a complex number
that addresses a particular point, irrespective of the chosen coordinate
type, or a macro defined to contain those coordinates.

2. The complex number/vector operations already available with curve2e
are the following; we specify “macro” because in general macros are
used, instead of explicit numerical values, but for input vector macros
it is possible to use the comma or colon separated ordered pair; “ver-
sor” means “unit vector”; angles are always expressed in degrees; out-
put quantities are everything that follows the key word to; output
quantities are always supposed to be in the form of control sequences.

o \MakeVectorFrom(number,number)to{vector macro)

o \CopyVect{vector macro) to{vector macro)

e \ModOfVect(vector macro) to{modulus macro)

o \DirOfVect(vector macro) to({versor macro)

o \ModAndDir0fVect{vector macro) to{modulus macro) and(versor macro)
e \ModAndAngleOfVect(vector macro) to{modulus macro) and(angle macro)
e \DistanceAndDirOfVect(P;) minus(P») to(distance macro) and({versor macro)
o \Xpart0fVect(vector macro) to(numerical macro)

o \YpartOfVect(vector macro) to(numerical macro)

e \DirFromAngle(angle macro) to(versor macro)

o \ArgOfVect(vector macro) to{angle macro)

o \ScaleVect(vector macro) by(scale factor) to{vector macro)

e \ConjVect{vector macro) to{conjugate vector macro)

o \SubVect(subtrahend vector) from{minuend vector) to({vector macro)
e \AddVect(Ist vector) and({2nd vector) to{vector macro)

o \Multvect{(Ist vector)}(x){(2nd vector)}(x){output vector macro)
the asterisks are optional; either one changes the (2nd vector) into its com-
plex conjugate

o \MultVect(Ist vector)(x)(2nd vector) to(vector macro)
discouraged; maintained for backward compatibility; the only optional as-
terisk changes the (2nd vector) into its complex conjugate

o \Divvect{{diidend vector)}{{divisor vector)}{{output vector macro)}

o \DivVect(dividend vector) by(divisor vector) to(vector macro)
maintained for backwards compatibility.

. A new command \segment ({P;)) ((P)) draws a line that joins the
specified points.

. Command \Dashline ((P;)) ((P)){(dash and gap length)} draws a
dashed line between the specified points; the (dash length) is specified
as a coefficient of \unitlenth so it is proportioned to the diagram
scale. The gap between dashes is just as wide as the dashes; they are
recomputed by the command in order to slightly adjust the (dash and
gap length) so that the line starts at point P; with a dash, and ends
at P, again with a dash.

. Command \Dotline ((P;)) ((P,)){(gap)} [{diameter)] traces a dotted
line between the specified points with dots (gap) units apart, starting
and ending with a dot at the specified points. Optionally the absolute
diameter of the dots may be specified: a diameter of 1pt (default)
is visible, but it might be too small; a diameter of 1 mm is really
very black, and may be too large; if the diameter is specified without
dimensions they are assumed by default to be typographic points.

. Command \polyline, \polygon and \polygon* are redefined to ac-
cept both coordinate kinds.

. Commands \VECTOR((P;)) ((P)) and \VVECTOR, with the same syn-
tax, draw vectors with one arrow tip at the end, or arrow tips at both
ends respectively.

. New commands \Arc ({center)) ({start)){(angle)} and, with the same
syntax, \VectorArc and \VectorARC draw arcs with the specified
(center), starting at point (start), with an aperture of (angle) degrees
(not radians). \Arc draws the arc without arrow tips; \VectorArc
draws the arc with one arrow tip at the end point; \VectorARC draws
an arc with arrow tips at both ends. \VVectorArc is an alias of
\VectorARC.

. Command \multiput has been redefined to accept optional argu-
ments, besides the use of coordinates of both kinds. The new syntax
is the following:

\multiput [(shift)] ((origin)) ((step)){(number)}{(object)} [{handler)] ‘

where, if you neglect the first and the last (optional) arguments, you
have the original syntax; the (origin) point is where the first (object)
is placed; (step) is the displacement of a new (object) relative to the
previous one; (number) is the total number of (object)s put in place by
the command; it is possible to specify the number trough an integer
expression computed with the \inteval function of the L3 language,
accessed through the xfp package functionalities already included into
the IATEX kernel. The new features are (shift), that is used to dis-
place the whole drawing somewhere else (in case some fine tuning is
required), and (handler); the latter is a powerful means to control
both the object to be set in place and its position; further on there
will be examples that show that the object can be put not only on
straight paths, but also un other curves, including parabolas, circles,
and other shapes.

10. Another version of repetitive commands \xmultiput is very similar
to \multiput but the iterations are controlled in a different way so
that it is possible also to draw continuous curves describing analytical
functions even with parametric equations. Further on there will be
some examples.

11. The xfp package is preloaded because not all functionalities have been
made available in the IXTEX kernel; among such functionalities two two
are very important, i.e. the L3 “functions”, \fpeval and \inteval;
the latter executes expressions on integer numbers containing the usual
operators +, -, *, /; the division quotient is rounded to the nearest
(positive or negative) integer. The former operates with real frac-
tional numbers and, in addition to the usual arithmetical operators as
\inteval, it can use many mathematical functions, from square roots,
to exponentials, logarithms, trigonometric and hyperbolic direct and
inverse functions®, plus other ones. Normally fractional numbers are
operated on decimal strings, with 16 fractional places, and 14 inte-
ger places but the L3 functions accept also scientific notation. The
user can specify truncation or rounding to a specified number of dig-
its. Such integer and fractional mathematical operations are already
integrated in most computations performed by curve2e.

12. curve2e provides three more L3 functions: \fptest, \fpwhiledo, and
\fpdowhile with the following syntax:

\fptest{(test)}{(true)}{(false)}
\fpdowhile{(test)}{(actions)}
\fowhiledo{(test)}{(actions)}

5The implementation of inverse hyperbolic functions at the moment is on the L3 Team
“to do” list.

10

13.

14.

15.

16.

17.

For all these macros the (test) is a logical L3 expression; its operands
are logical constants, logical values, logical numeric comparisons; its
operators are the typical | |, &&, and !, respectively for OR, AND, and
NOT. The logical numerical comparisons are mathematical constants
or expressions connected with relation operators, such as >, =, <;
such operators may be negated with the NOT operator; therefore,
for example, !> means “not greater than”, therefore “lower or equal
to”; such operators may be coupled, for example >= makes a valid
comparison and it is equal to !<.

The above tests are very useful to control both \fptest and \fpdowhile
and \fpwhiledo. The logical (test) result lets \fptest execute only
the (true) or the (false) code. Before using \fpdowhile or \fpwhiledo
the (fest) expression must be initialised to be true; the (actions)
should contain some code to be iteratively executed, but they must
contain some assignments, typically a change in an iteration counter,
such that eventually the (test) logical expression becomes false. Lack-
ing this assignments, the loop continues to infinity, or better, until a
fatal error message is issued that informs that the program working
memory is exhausted.

The difference between \fpdowhile and \fpwhiledo is the order in
which the (test) and the first(action) are executed; in facts \fpdowhile
first does the (action) then the (test), while \fpwhiledo first executes
the (test) then the (action). Since the modification of the test logical
value is done by the commands contained in the (actions) this switch-
ing of the (test) and (action) produces different results. By adjusting
the (test) it is possible to get the same results, but the expressiveness
of the (test) may be easier to understand in one way rather than the
other. Some of the examples show such different (test) syntaxes.
Such new commands are already used to code the \multiput and
\xmultiput commands, but they are available also to the user who
can operate in a very advanced way; further on, some examples will
show certain advanced drawings.

General curves can be drawn by pic2e command \curve that is sort
of difficult to use, because the user has to specify also the control
points of the third order Bézier splines. Some other new commands
are available with curve2e, that are supposed to be easier to use; they
are described in the following items.

The new command \Curve joins a sequence of third order splines by
simply specifying the node-direction coordinates; i.e. at the junction
of two consecutive splines, in an interpolation node the final previous
spline tangent has the same direction as that at the second spline first
node; if a change of direction is required, an optional new direction
can be specified. Therefore this triplet of information has the following
syntax:

11

({(node)) <(direction)>[(new direction)]

Evidently the (new direction) is specified only for the nodes that cor-
respond to a cusp. A variation of the command arguments is available
by optionally specifying the “looseness” of the curve:

((node)) <{direction; start, end)>[{...)]

where (start) is the spline starting “looseness” and (end) is the spline
ending one. These (generally different) values are an index of how far
the control point is from the adjacent node. With this functionality the
user has a very good control on the curve shape and curvature. The
optional new direction at a cusp point has the sane extended syntax

18. A similar command \Qurve works almost the same way, but it traces
a quadratic Bézier spline; this one is specified only with two nodes
an a single control point, therefore is less configurable than cubic
splines; the same final line may require several quadratic splines when
just a single cubic spline might do the same job. Notice also that
quadratic splines are just parabolic arcs, therefore without inflection
points, while a cubic spline can have one inflexion point.

19. A further advanced variation is obtained with the new \CurveBetween
command that creates a single cubic spline between two given points
with the following syntax:

\CurveBetween(nodel) And(node2) WithDirs(dir!) And(dir2)
20. A similar variant command is defined with the following syntax:

\CbezierBetween(nodel) And(node2) WithDirs(dirl) And(dir2)
UsingDists(dist!) And(dist2)

Usage examples are shown in section 7

6 FEuclidean geometry commands

With the already large available power of curve2e there was a push towards
specialised applications; the first of which was, evidently, geometry; that
kind of geometry that was used in the ancient times when mathematicians
did not have available the sophisticated means they have today; they did
not even have a positional numerical notation, that arrived in the “western
world” we are familiar with, just by the XI-XII century; before replacing
the roman numbering system, another couple of centuries passed by; real
numbers with the notation we use today with a decimal separator, had to
wait till the XVI century (at least); many things that naw are taught in
elementary school were still a sort of magic until the end of XVIII century.

Even a simple algebraic second degree equation was a problem. In facts
the Renaissance was the artistic period when the classical proportions were

12

brought back to the artists who could not solve the simple equation where
a segment of unit length is divided in two unequal parts z and 1 — x such
that the following proportion exists among the various parts and the whole
segment:

x l-w

1
- = —rx=—-—1
1 T x

today we cam solve the problem by manipulating that simple proportion to
get
4 —-1=0

and we know that the equation has two solution of opposite signs, and that
their magnitudes are the reciprocal of one another. Since we are interested
in their magnitudes, we adapt the solutions in the form

541 ~1.618...
w10 = VEEL AR e 05— 1T (1)
2) =0.618...

The larger number is called the golden number and the smaller one the
golden section.

Luca Pacioli, by the turn of centuries XV-XVI, was the tutor of Guidu-
baldo, the son and heir of Federico di Montefeltro, Duke of Urbino”; he wrote
the famous book De Diuina Proportione that contained also the theory of the
golden section accompanied by beautiful drawings of many Platonic solids
and other non convex ones, drawn by Leonardo da Vinci. Everything was
executed with perfect etchings, even the construction of the golden section;
in its basic form® it is reproduced in figure 2.

By the way figure 2 shows also the code that is used for the drawing
done completely with the facilities available just with curve2e. It is also a
usage example of several commands.

Illiteracy was very widespread; books were expensive and were common
just in the wealthy people mansions.

Mathematicians in the classical times B.C. up to the artists in the Re-
naissance, had no other means but to use geometrical constructions with
ruler and compass. Even today in schools where calculus is not yet taught
as a normal subject, possibly not in certain high school degree courses, but
certainly not in elementary and junior high schools, the instructors have
to recourse to geometrical constructions. Sometimes, as in Italy, access to
public universities is open with no restrictions to all students with a high
school diploma for degree courses that are more vocational than cultural.
Therefore such students in some university degree courses have to frequent

"If you never visited this Renaissance city and its Ducal Palace, consider visiting it; it
is one of the many UNESCO Heritage places.

8The third formula in equation (1) is written in such a way as to explain the graphical
construction in figure 2.

13

\unitlength=0.005\1linewidth
\begin{picture}(170,140) (0,-70)
\AutoGrid

\VECTOR(0,0) (170,0)

\Pbox (170,0) [t]{x}[0]
\Pbox(100,0) [t]{\mathrm{1}}[2] =
\Pbox (0,0) [r]{0}[2] \
\Arc(100,0) (50,0){-90}
\segment (100,0) (100,70)

\segment (0,0) (100,50) /

\Pbox (50,0) [tr]{\mathrm{0.5}}[2] 2 I 1

\ModAndAngle0fVect100,50 to\M and\A 0 0.5 \ 1

\Arc(0,0) (\M,0) {\AX\Pbox (\M,0) [b1]1{C}[2] \ \ nle
Y.

\Arc(\M,0) (\M,-50) {90}

\Arc (\M,0) (\M,-50) {-90}

\Pbox (\fpeval{\M-50},0) [b]{\mathit{x_2}}[3]
\Pbox (\fpeval{\M+50},0) [b]{\mathit{x_1}}[3] N~
\put (\M, 0) {\Vector(-70:50)}

\Pbox (120,-25) [bl]{\mathit{r}=\mathrm{0.5}}[0]
\thicklines

\segment (0,0) (100,0)

\end{picture}

\ T

Figure 2: The golden section x9 and the golden number x;

upgrading courses in order to master some more mathematics compared to
what they studied during their basic education.

The instructors nowadays very often prepare some booklets with their
lessons; such documents, especially in electronic form, are a good help for
many students. And ITEX is used to write such documents. Therefore this
extension module is mostly dedicated to such instructors.

The contents of this module is not exhaustive; it just shows a way to use
the curve2e facilities to extend it to be suited for the kind of geometry they
teach.

Here we describe the new commands provided by this package; then in
section 7 we show their usage by means of examples.

1. Command \polyvector is simple extension of the \polyline com-
mand introduced by pict2e: its syntax is identical to that of \polyline;
it draws a polyline with an arrow tip at the last segment; it turns out
to be very handy while drawing block diagrams. See figure 4.

2. Command \IntersectionOfLines is a fundamental one; its syntax is
the following:

\Intersecion0fLines ({point!)) ({dirl)) and({point2)) ((dir2)) to(vector) ‘

were each line is identified with its (point) and its direction; (vector) is
the complex number that identifies the coordinates of the intersection
point; the intersection coordinates go to the output (vector).

14

\unitlength=0.01\1linewidth

\begin{picture}(100,30)

\AutoGrid = -

\Dashline(0,0) (100,30) {2} T-- -1

\Dashline(100,0) (0,30){2} Trez”

\IntersectionOfLinesY, - =~
(0,0) (10,3)and% = ~
(100,0) (-10,3)to\P

\Pbox (\P) [b]{P}[3]

\end{picture}
. A second command\IntersectionOfSegments does almost the same

work, but the coordinates of a segment end points define also its di-
rection, which is the argument of the difference of the terminal nodes
of each segment; the syntax therefore is the following:

/
T

v

\

\IntersectionOfSegments ({pointl1)) ({point12))
and ({point21)) ((point22))to intersection point)

Again the intersection point coordinates go to the output (intersection
point). The first segment is between points 11 and 12, and, similarly,

the second segment is between points 21 and 22.
\unitlength=0.01\1linewidth

\begin{picturel}(100,30)
\AutoGrid
\segment (0,0) (100,30)
\segment (0, 30) (100,0)
\IntersectionOfSegments’
(0,0) (100,30) and%
(100,0) (0,30)to\P
\Pbox (\P) [b]{P}[3]

\end{picture}
. Another “intersection” command is \Intersections0fLine to deter-

mine both intersections of a line with a circle. The syntax is:

/
\

—

i

\
/

\IntersectionsOfLine ({point!)) ({point2))
WithCircle ((center)){(radius)}to(intl) and(int2)

where (pointl) and (point2) identify a segment joining such points,
and therefore a specific line with the segment direction and passing
through a given point; the segment should cross the circle; this circle is
identified with its (center) and (radius); the intersection points (int1)
and (int2) are the coordinates of the intersection points; if the line
and circle do not intersect, a warning message is issued, shown in the
console and written to the . log file; the intersection points are assigned
the default values 0,0, which evidently produce strange results in the
output document, so as to remind the user to give a look to the .log
file and to review his/her data.

15

\unitlength=0.01\linewidth\raggedleft

\begin{picture}(60,40)(-10,0)

\AutoGrid

\def\Radius{20}%

\Circlewithcenter 20,20 radius\Radius

\segment (10,0) (50,40) C

\Intersections0fLine(10,0) (50,40)%
WithCircle(20,20) (20)% p
to\Pu and\Pd

\Pbox (\Pu) [b]{P_13}[3]

\Pbox (\Pd) [1]1{P_23}[3]

\end{picture}

F2

. It is difficult to numerically determine the coordinates of the intersec-
tion points of two circles; it becomes easier if one of the intersections
is known; to this end, a macro to draw a circle with a given center and
passing through a given point is handy:

\CircleThrough(point)WithCenter{(center)}

draws such circumference.

\unitlength=0.01\linewidth\raggedleft
\begin{picture}(60,40)

\AutoGrid

\CopyVect10,15to\P .
\Pbox (\P) [tr]{P}[2] -
\Pbox(30,20) [b]{C}[2] P
\def\Ce{30,20}\relax
\CircleThrough\P WithCenter\Ce
\end{picture}

. With the above macro it becomes easy to draw two circumferences
with different centers and passing through the same point; therefore
it becomes easy to determine the other intersection point by means of
the following macro:

\Segment ({(endpoint1)) ({endpoint2)) SymmetricPoint0f(pI)
to(p2)

The computation is simple, because the second intersection is the sym-
metrical point (p2) of (p) with respect to the segment that joins the
centers of the given circles intersecting one another in (p1). The fol-
lowing small example displays how to find point P» symmetrical to P;
with respect to a given line.

16

\raggedleft\unitlength=0.01\1linewidth

\begin{picture}(60,30)

\AutoGrid

\segment (0,0) (60,30) P

\CopyVect40,5to\Pu

\Segment (0,0) (60,30)%
SymmetricPoint0f\Pu to\Pd

\Pbox (\Pu) [b]{P_1}[2]

\Pbox (\Pd) [t]{P_2}[2]

\end{picture}

7. It would be interesting to solve the same problem with help of the
following macro relating to right triangles identified with their hy-
pothenuse and one of its legs; the other leg is found by means of this
macro:

\LegFromHypothenuse(lengthl) AndOtherLeg(length2)
to{(length3)}

In facts, the intersection points of two circles define their common
chord; this chord and the two circle centers define two isosceles trian-
gles with the same base, the chord; therefore the segment joining the
circle centers, coincides with the chord axis and divides each isosce-
les triangle in two right triangles, where the hypotenuse is one of two
radii and the first leg is the distance from the chord middle point,
intersection of the chord and the segment joining the circle centers;
at this point the distance of the second point intersection from the
chord mi